|
1 | 1 | # RNN Generator
|
2 | 2 | Based 99.98\% on the model from [1]
|
3 | 3 |
|
| 4 | +## Usage |
4 | 5 |
|
5 |
| -# How to use Molecular Generator Code |
| 6 | +The CANDLE-ized versions of the codes can simply be run without any command line arguments, with the default settings being read from the corresponding `default_model` file. |
| 7 | +When needed, the CANDLE versions also use the `fetch_file` methods, which store the data in the top-level `Data/Examples` directory. |
| 8 | +Any keywords in the `default_model` file can be overwritten with the appropriate command line argument. |
| 9 | +The orginal codes and workflow below are preserved for comparison. |
| 10 | + |
| 11 | +# CANDLE workflow |
| 12 | + |
| 13 | +This will automatically download the models needed and run with the `autosave.model.pt` set in the `default_model` file. |
| 14 | + |
| 15 | +``` |
| 16 | +python infer_rnngen_baseline_pytorch.py |
| 17 | +``` |
| 18 | + |
| 19 | +# Original workflow |
6 | 20 |
|
7 | 21 | ## Python dependencies
|
8 | 22 |
|
@@ -38,6 +52,6 @@ python infer.py -i mosesrun/ --logdir pilot1/ -o p1_poor.txt -n 10000 -vr --mode
|
38 | 52 |
|
39 | 53 |
|
40 | 54 | # Refereces:
|
41 |
| -1. Gupta, A., Müller, A., Huisman, B., Fuchs, J., Schneider, P., Schneider, G. (2018). Generative Recurrent Networks for De Novo Drug Design Molecular Informatics 37(1-2)https://dx.doi.org/10.1002/minf.201700111 |
42 |
| -2. Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A., Nikolenko, S., Aspuru-Guzik, A., Zhavoronkov, A. (2018). Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Modelshttps://arxiv.org/abs/1811.12823 |
| 55 | +1. Gupta, A., Müller, A., Huisman, B., Fuchs, J., Schneider, P., Schneider, G. (2018). Generative Recurrent Networks for De Novo Drug Design Molecular Informatics 37(1-2) https://dx.doi.org/10.1002/minf.201700111 |
| 56 | +2. Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A., Nikolenko, S., Aspuru-Guzik, A., Zhavoronkov, A. (2018). Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models https://arxiv.org/abs/1811.12823 |
43 | 57 |
|
0 commit comments