|
| 1 | +import sys |
| 2 | +import os |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from torch import nn, optim |
| 7 | +from torch.utils.data import DataLoader |
| 8 | +from tqdm import tqdm |
| 9 | +from argparse import SUPPRESS |
| 10 | + |
| 11 | +try: |
| 12 | + from apex import amp |
| 13 | + |
| 14 | +except ImportError: |
| 15 | + amp = None |
| 16 | + |
| 17 | +from dataset import LMDBDataset |
| 18 | +from pixelsnail import PixelSNAIL |
| 19 | +from scheduler import CycleScheduler |
| 20 | + |
| 21 | +file_path = os.path.dirname(os.path.realpath(__file__)) |
| 22 | +lib_path = os.path.abspath(os.path.join(file_path, '..')) |
| 23 | +sys.path.append(lib_path) |
| 24 | +lib_path2 = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) |
| 25 | +sys.path.append(lib_path2) |
| 26 | + |
| 27 | + |
| 28 | +import candle |
| 29 | + |
| 30 | +additional_definitions = [ |
| 31 | + {'name': 'sched_mode', |
| 32 | + 'type': str, |
| 33 | + 'default': None, |
| 34 | + 'help': 'Mode of learning rate scheduler'}, |
| 35 | + {'name': 'lmdb_filename', |
| 36 | + 'type': str, |
| 37 | + 'default': SUPPRESS, |
| 38 | + 'help': 'lmdb dataset path'}, |
| 39 | + {'name': 'amp', |
| 40 | + 'type': str, |
| 41 | + 'default': 'O0', |
| 42 | + 'help': ''}, |
| 43 | + {'name': 'hier', |
| 44 | + 'type': str, |
| 45 | + 'default': 'top', |
| 46 | + 'help': ''}, |
| 47 | + {'name': 'channel', |
| 48 | + 'type': int, |
| 49 | + 'default': 256, |
| 50 | + 'help': ''}, |
| 51 | + {'name': 'n_res_block', |
| 52 | + 'type': int, |
| 53 | + 'default': 4, |
| 54 | + 'help': ''}, |
| 55 | + {'name': 'n_res_channel', |
| 56 | + 'type': int, |
| 57 | + 'default': 256, |
| 58 | + 'help': ''}, |
| 59 | + {'name': 'n_out_res_block', |
| 60 | + 'type': int, |
| 61 | + 'default': 0, |
| 62 | + 'help': ''}, |
| 63 | + {'name': 'n_cond_res_block', |
| 64 | + 'type': int, |
| 65 | + 'default': 3, |
| 66 | + 'help': ''}, |
| 67 | + {'name': 'ckpt_restart', |
| 68 | + 'type': str, |
| 69 | + 'default': None, |
| 70 | + 'help': 'Checkpoint to restart from'}, |
| 71 | +] |
| 72 | + |
| 73 | +required = [ |
| 74 | + 'batch_size', |
| 75 | + 'epochs', |
| 76 | + 'hier', |
| 77 | + 'learning_rate', |
| 78 | + 'channel', |
| 79 | + 'n_res_block', |
| 80 | + 'n_res_channel', |
| 81 | + 'n_out_res_block', |
| 82 | + 'n_cond_res_block', |
| 83 | + 'dropout', |
| 84 | + 'amp', |
| 85 | + 'sched_mode', |
| 86 | + 'lmdb_filename', |
| 87 | +] |
| 88 | + |
| 89 | + |
| 90 | +class TrPxSnBk(candle.Benchmark): |
| 91 | + |
| 92 | + def set_locals(self): |
| 93 | + """Functionality to set variables specific for the benchmark |
| 94 | + - required: set of required parameters for the benchmark. |
| 95 | + - additional_definitions: list of dictionaries describing the additional parameters for the |
| 96 | + benchmark. |
| 97 | + """ |
| 98 | + |
| 99 | + if required is not None: |
| 100 | + self.required = set(required) |
| 101 | + if additional_definitions is not None: |
| 102 | + self.additional_definitions = additional_definitions |
| 103 | + |
| 104 | + |
| 105 | +def initialize_parameters(default_model='train_pixelsnail_default_model.txt'): |
| 106 | + |
| 107 | + # Build benchmark object |
| 108 | + trpsn = TrPxSnBk(file_path, default_model, 'pytorch', |
| 109 | + prog='train_pixelsnail_baseline', |
| 110 | + desc='Histology train pixelsnail - Examples') |
| 111 | + |
| 112 | + print("Created sample benchmark") |
| 113 | + |
| 114 | + # Initialize parameters |
| 115 | + gParameters = candle.finalize_parameters(trpsn) |
| 116 | + print("Parameters initialized") |
| 117 | + |
| 118 | + return gParameters |
| 119 | + |
| 120 | + |
| 121 | +def train(args, epoch, loader, model, optimizer, scheduler, device): |
| 122 | + loader = tqdm(loader) |
| 123 | + |
| 124 | + criterion = nn.CrossEntropyLoss() |
| 125 | + |
| 126 | + for i, (top, bottom, label) in enumerate(loader): |
| 127 | + model.zero_grad() |
| 128 | + |
| 129 | + top = top.to(device) |
| 130 | + |
| 131 | + if args.hier == 'top': |
| 132 | + target = top |
| 133 | + out, _ = model(top) |
| 134 | + |
| 135 | + elif args.hier == 'bottom': |
| 136 | + bottom = bottom.to(device) |
| 137 | + target = bottom |
| 138 | + out, _ = model(bottom, condition=top) |
| 139 | + |
| 140 | + loss = criterion(out, target) |
| 141 | + loss.backward() |
| 142 | + |
| 143 | + if scheduler is not None: |
| 144 | + scheduler.step() |
| 145 | + optimizer.step() |
| 146 | + |
| 147 | + _, pred = out.max(1) |
| 148 | + correct = (pred == target).float() |
| 149 | + accuracy = correct.sum() / target.numel() |
| 150 | + |
| 151 | + lr = optimizer.param_groups[0]['lr'] |
| 152 | + |
| 153 | + loader.set_description( |
| 154 | + ( |
| 155 | + f'epoch: {epoch + 1}; loss: {loss.item():.5f}; ' |
| 156 | + f'acc: {accuracy:.5f}; lr: {lr:.5f}' |
| 157 | + ) |
| 158 | + ) |
| 159 | + |
| 160 | + |
| 161 | +class PixelTransform: |
| 162 | + def __init__(self): |
| 163 | + pass |
| 164 | + |
| 165 | + def __call__(self, input): |
| 166 | + ar = np.array(input) |
| 167 | + |
| 168 | + return torch.from_numpy(ar).long() |
| 169 | + |
| 170 | + |
| 171 | +def run(params): |
| 172 | + |
| 173 | + args = candle.ArgumentStruct(**params) |
| 174 | + # Configure GPUs |
| 175 | + ndevices = torch.cuda.device_count() |
| 176 | + if ndevices < 1: |
| 177 | + raise Exception('No CUDA gpus available') |
| 178 | + |
| 179 | + device = 'cuda' |
| 180 | + |
| 181 | + dataset = LMDBDataset(args.lmdb_filename) |
| 182 | + loader = DataLoader( |
| 183 | + dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True |
| 184 | + ) |
| 185 | + |
| 186 | + ckpt = {} |
| 187 | + |
| 188 | + if args.ckpt_restart is not None: |
| 189 | + ckpt = torch.load(args.ckpt_restart) |
| 190 | + args = ckpt['args'] |
| 191 | + |
| 192 | + if args.hier == 'top': |
| 193 | + model = PixelSNAIL( |
| 194 | + [32, 32], |
| 195 | + 512, |
| 196 | + args.channel, |
| 197 | + 5, |
| 198 | + 4, |
| 199 | + args.n_res_block, |
| 200 | + args.n_res_channel, |
| 201 | + dropout=args.dropout, |
| 202 | + n_out_res_block=args.n_out_res_block, |
| 203 | + ) |
| 204 | + |
| 205 | + elif args.hier == 'bottom': |
| 206 | + model = PixelSNAIL( |
| 207 | + [64, 64], |
| 208 | + 512, |
| 209 | + args.channel, |
| 210 | + 5, |
| 211 | + 4, |
| 212 | + args.n_res_block, |
| 213 | + args.n_res_channel, |
| 214 | + attention=False, |
| 215 | + dropout=args.dropout, |
| 216 | + n_cond_res_block=args.n_cond_res_block, |
| 217 | + cond_res_channel=args.n_res_channel, |
| 218 | + ) |
| 219 | + |
| 220 | + if 'model' in ckpt: |
| 221 | + model.load_state_dict(ckpt['model']) |
| 222 | + |
| 223 | + model = model.to(device) |
| 224 | + optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) |
| 225 | + |
| 226 | + if amp is not None: |
| 227 | + model, optimizer = amp.initialize(model, optimizer, opt_level=args.amp) |
| 228 | + |
| 229 | + model = nn.DataParallel(model) |
| 230 | + model = model.to(device) |
| 231 | + |
| 232 | + scheduler = None |
| 233 | + if args.sched_mode == 'cycle': |
| 234 | + scheduler = CycleScheduler( |
| 235 | + optimizer, args.learning_rate, n_iter=len(loader) * args.epochs, momentum=None |
| 236 | + ) |
| 237 | + |
| 238 | + for i in range(args.epochs): |
| 239 | + train(args, i, loader, model, optimizer, scheduler, device) |
| 240 | + torch.save( |
| 241 | + {'model': model.module.state_dict(), 'args': args}, |
| 242 | + f'{args.ckpt_directory}/checkpoint/pixelsnail_{args.hier}_{str(i + 1).zfill(3)}.pt', |
| 243 | + ) |
| 244 | + |
| 245 | + |
| 246 | +def main(): |
| 247 | + params = initialize_parameters() |
| 248 | + run(params) |
| 249 | + |
| 250 | + |
| 251 | +if __name__ == '__main__': |
| 252 | + main() |
0 commit comments