|
| 1 | +from __future__ import division, print_function |
| 2 | + |
| 3 | +import argparse |
| 4 | +import logging |
| 5 | + |
| 6 | +import numpy as np |
| 7 | +import pandas as pd |
| 8 | + |
| 9 | +import mxnet as mx |
| 10 | +from mxnet.io import DataBatch, DataIter |
| 11 | + |
| 12 | +# For non-interactive plotting |
| 13 | +import matplotlib as mpl |
| 14 | +mpl.use('Agg') |
| 15 | +import matplotlib.pyplot as plt |
| 16 | + |
| 17 | +import p1b3 |
| 18 | + |
| 19 | + |
| 20 | +# Model and Training parameters |
| 21 | + |
| 22 | +# Seed for random generation |
| 23 | +SEED = 2016 |
| 24 | +# Size of batch for training |
| 25 | +BATCH_SIZE = 100 |
| 26 | +# Number of training epochs |
| 27 | +NB_EPOCH = 20 |
| 28 | +# Number of data generator workers |
| 29 | +NB_WORKER = 1 |
| 30 | + |
| 31 | +# Percentage of dropout used in training |
| 32 | +DROP = 0.1 |
| 33 | +# Activation function (options: 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear') |
| 34 | +ACTIVATION = 'relu' |
| 35 | +LOSS = 'mse' |
| 36 | +OPTIMIZER = 'sgd' |
| 37 | + |
| 38 | +# Type of feature scaling (options: 'maxabs': to [-1,1] |
| 39 | +# 'minmax': to [0,1] |
| 40 | +# None : standard normalization |
| 41 | +SCALING = 'std' |
| 42 | +# Features to (randomly) sample from cell lines or drug descriptors |
| 43 | +FEATURE_SUBSAMPLE = 500#0 |
| 44 | +# FEATURE_SUBSAMPLE = 0 |
| 45 | + |
| 46 | +# Number of units in fully connected (dense) layers |
| 47 | +D1 = 1000 |
| 48 | +D2 = 500 |
| 49 | +D3 = 100 |
| 50 | +D4 = 50 |
| 51 | +DENSE_LAYERS = [D1, D2, D3, D4] |
| 52 | + |
| 53 | +# Number of units per locally connected layer |
| 54 | +C1 = 10, 10, 5 # nb_filter, filter_length, stride |
| 55 | +C2 = 0, 0, 0 # disabled layer |
| 56 | +# CONVOLUTION_LAYERS = list(C1 + C2) |
| 57 | +CONVOLUTION_LAYERS = [0, 0, 0] |
| 58 | +POOL = 10 |
| 59 | + |
| 60 | +MIN_LOGCONC = -5. |
| 61 | +MAX_LOGCONC = -4. |
| 62 | + |
| 63 | +CATEGORY_CUTOFFS = [0.] |
| 64 | + |
| 65 | +np.set_printoptions(threshold=np.nan) |
| 66 | +np.random.seed(SEED) |
| 67 | + |
| 68 | + |
| 69 | +def get_parser(): |
| 70 | + parser = argparse.ArgumentParser(prog='p1b3_baseline', |
| 71 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
| 72 | + parser.add_argument("-v", "--verbose", action="store_true", |
| 73 | + help="increase output verbosity") |
| 74 | + parser.add_argument("-a", "--activation", action="store", |
| 75 | + default=ACTIVATION, |
| 76 | + help="keras activation function to use in inner layers: relu, tanh, sigmoid...") |
| 77 | + parser.add_argument("-b", "--batch_size", action="store", |
| 78 | + default=BATCH_SIZE, type=int, |
| 79 | + help="batch size") |
| 80 | + parser.add_argument("-c", "--convolution", action="store", nargs='+', type=int, |
| 81 | + default=CONVOLUTION_LAYERS, |
| 82 | + help="integer array describing convolution layers: conv1_nb_filter, conv1_filter_len, conv1_stride, conv2_nb_filter, conv2_filter_len, conv2_stride ...") |
| 83 | + parser.add_argument("-d", "--dense", action="store", nargs='+', type=int, |
| 84 | + default=DENSE_LAYERS, |
| 85 | + help="number of units in fully connected layers in an integer array") |
| 86 | + parser.add_argument("-e", "--epochs", action="store", |
| 87 | + default=NB_EPOCH, type=int, |
| 88 | + help="number of training epochs") |
| 89 | + parser.add_argument("-l", "--locally_connected", action="store_true", |
| 90 | + default=False, # TODO: not currently supported |
| 91 | + help="use locally connected layers instead of convolution layers") |
| 92 | + parser.add_argument("-o", "--optimizer", action="store", |
| 93 | + default=OPTIMIZER, |
| 94 | + help="keras optimizer to use: sgd, rmsprop, ...") |
| 95 | + parser.add_argument("--drop", action="store", |
| 96 | + default=DROP, type=float, |
| 97 | + help="ratio of dropout used in fully connected layers") |
| 98 | + parser.add_argument("--loss", action="store", |
| 99 | + default=LOSS, |
| 100 | + help="keras loss function to use: mse, ...") |
| 101 | + parser.add_argument("--pool", action="store", |
| 102 | + default=POOL, type=int, |
| 103 | + help="pooling layer length") |
| 104 | + parser.add_argument("--scaling", action="store", |
| 105 | + default=SCALING, |
| 106 | + help="type of feature scaling; 'minabs': to [-1,1]; 'minmax': to [0,1], 'std': standard unit normalization; None: no normalization") |
| 107 | + parser.add_argument("--drug_features", action="store", |
| 108 | + default="descriptors", |
| 109 | + help="use dragon7 descriptors, latent representations from Aspuru-Guzik's SMILES autoencoder, or both, or random features; 'descriptors','latent', 'both', 'noise'") |
| 110 | + parser.add_argument("--feature_subsample", action="store", |
| 111 | + default=FEATURE_SUBSAMPLE, type=int, |
| 112 | + help="number of features to randomly sample from each category (cellline expression, drug descriptors, etc), 0 means using all features") |
| 113 | + parser.add_argument("--min_logconc", action="store", |
| 114 | + default=MIN_LOGCONC, type=float, |
| 115 | + help="min log concentration of dose response data to use: -3.0 to -7.0") |
| 116 | + parser.add_argument("--max_logconc", action="store", |
| 117 | + default=MAX_LOGCONC, type=float, |
| 118 | + help="max log concentration of dose response data to use: -3.0 to -7.0") |
| 119 | + parser.add_argument("--subsample", action="store", |
| 120 | + default='naive_balancing', |
| 121 | + help="dose response subsample strategy; None or 'naive_balancing'") |
| 122 | + parser.add_argument("--category_cutoffs", action="store", nargs='+', type=float, |
| 123 | + default=CATEGORY_CUTOFFS, |
| 124 | + help="list of growth cutoffs (between -1 and +1) seperating non-response and response categories") |
| 125 | + parser.add_argument("--train_samples", action="store", |
| 126 | + default=0, type=int, |
| 127 | + help="overrides the number of training samples if set to nonzero") |
| 128 | + parser.add_argument("--val_samples", action="store", |
| 129 | + default=0, type=int, |
| 130 | + help="overrides the number of validation samples if set to nonzero") |
| 131 | + parser.add_argument("--save", action="store", |
| 132 | + default='save', |
| 133 | + help="prefix of output files") |
| 134 | + parser.add_argument("--scramble", action="store_true", |
| 135 | + help="randomly shuffle dose response data") |
| 136 | + parser.add_argument("--workers", action="store", |
| 137 | + default=NB_WORKER, type=int, |
| 138 | + help="number of data generator workers") |
| 139 | + parser.add_argument("--gpus", action="store", nargs='*', |
| 140 | + default=[], type=int, |
| 141 | + help="set IDs of GPUs to use") |
| 142 | + |
| 143 | + return parser |
| 144 | + |
| 145 | + |
| 146 | +def extension_from_parameters(args): |
| 147 | + """Construct string for saving model with annotation of parameters""" |
| 148 | + ext = '.mx' |
| 149 | + ext += '.A={}'.format(args.activation) |
| 150 | + ext += '.B={}'.format(args.batch_size) |
| 151 | + ext += '.D={}'.format(args.drop) |
| 152 | + ext += '.E={}'.format(args.epochs) |
| 153 | + if args.feature_subsample: |
| 154 | + ext += '.F={}'.format(args.feature_subsample) |
| 155 | + if args.convolution: |
| 156 | + name = 'LC' if args.locally_connected else 'C' |
| 157 | + layer_list = list(range(0, len(args.convolution), 3)) |
| 158 | + for l, i in enumerate(layer_list): |
| 159 | + nb_filter = args.convolution[i] |
| 160 | + filter_len = args.convolution[i+1] |
| 161 | + stride = args.convolution[i+2] |
| 162 | + if nb_filter <= 0 or filter_len <= 0 or stride <= 0: |
| 163 | + break |
| 164 | + ext += '.{}{}={},{},{}'.format(name, l+1, nb_filter, filter_len, stride) |
| 165 | + if args.pool and layer_list[0] and layer_list[1]: |
| 166 | + ext += '.P={}'.format(args.pool) |
| 167 | + for i, n in enumerate(args.dense): |
| 168 | + if n: |
| 169 | + ext += '.D{}={}'.format(i+1, n) |
| 170 | + ext += '.S={}'.format(args.scaling) |
| 171 | + |
| 172 | + return ext |
| 173 | + |
| 174 | + |
| 175 | +class ConcatDataIter(DataIter): |
| 176 | + """Data iterator for concatenated features |
| 177 | + """ |
| 178 | + |
| 179 | + def __init__(self, data_loader, |
| 180 | + partition='train', |
| 181 | + batch_size=32, |
| 182 | + num_data=None, |
| 183 | + shape=None): |
| 184 | + super(ConcatDataIter, self).__init__() |
| 185 | + self.data = data_loader |
| 186 | + self.batch_size = batch_size |
| 187 | + self.gen = p1b3.DataGenerator(data_loader, partition=partition, batch_size=batch_size, shape=shape, concat=True) |
| 188 | + self.num_data = num_data or self.gen.num_data |
| 189 | + self.cursor = 0 |
| 190 | + self.gen = self.gen.flow() |
| 191 | + |
| 192 | + @property |
| 193 | + def provide_data(self): |
| 194 | + return [('concat_features', (self.batch_size, self.data.input_dim))] |
| 195 | + |
| 196 | + @property |
| 197 | + def provide_label(self): |
| 198 | + return [('growth', (self.batch_size,))] |
| 199 | + |
| 200 | + def reset(self): |
| 201 | + self.cursor = 0 |
| 202 | + |
| 203 | + def iter_next(self): |
| 204 | + self.cursor += self.batch_size |
| 205 | + if self.cursor <= self.num_data: |
| 206 | + return True |
| 207 | + else: |
| 208 | + return False |
| 209 | + |
| 210 | + def next(self): |
| 211 | + if self.iter_next(): |
| 212 | + x, y = next(self.gen) |
| 213 | + return DataBatch(data=[mx.nd.array(x)], label=[mx.nd.array(y)]) |
| 214 | + else: |
| 215 | + raise StopIteration |
| 216 | + |
| 217 | + |
| 218 | +def plot_network(net, filename): |
| 219 | + try: |
| 220 | + dot = mx.viz.plot_network(net) |
| 221 | + except ImportError: |
| 222 | + return |
| 223 | + try: |
| 224 | + dot.render(filename, view=False) |
| 225 | + print('Plotted network architecture in {}'.format(filename+'.pdf')) |
| 226 | + except Exception: |
| 227 | + return |
| 228 | + |
| 229 | + |
| 230 | +def main(): |
| 231 | + parser = get_parser() |
| 232 | + args = parser.parse_args() |
| 233 | + print('Args:', args) |
| 234 | + |
| 235 | + # it = RegressionDataIter() |
| 236 | + |
| 237 | + loggingLevel = logging.DEBUG if args.verbose else logging.INFO |
| 238 | + logging.basicConfig(level=loggingLevel, format='') |
| 239 | + |
| 240 | + ext = extension_from_parameters(args) |
| 241 | + |
| 242 | + loader = p1b3.DataLoader(feature_subsample=args.feature_subsample, |
| 243 | + scaling=args.scaling, |
| 244 | + drug_features=args.drug_features, |
| 245 | + scramble=args.scramble, |
| 246 | + min_logconc=args.min_logconc, |
| 247 | + max_logconc=args.max_logconc, |
| 248 | + subsample=args.subsample, |
| 249 | + category_cutoffs=args.category_cutoffs) |
| 250 | + |
| 251 | + net = mx.sym.Variable('concat_features') |
| 252 | + out = mx.sym.Variable('growth') |
| 253 | + |
| 254 | + if args.convolution and args.convolution[0]: |
| 255 | + net = mx.sym.Reshape(data=net, shape=(args.batch_size, 1, loader.input_dim, 1)) |
| 256 | + layer_list = list(range(0, len(args.convolution), 3)) |
| 257 | + for l, i in enumerate(layer_list): |
| 258 | + nb_filter = args.convolution[i] |
| 259 | + filter_len = args.convolution[i+1] |
| 260 | + stride = args.convolution[i+2] |
| 261 | + if nb_filter <= 0 or filter_len <= 0 or stride <= 0: |
| 262 | + break |
| 263 | + net = mx.sym.Convolution(data=net, num_filter=nb_filter, kernel=(filter_len, 1), stride=(stride, 1)) |
| 264 | + net = mx.sym.Activation(data=net, act_type=args.activation) |
| 265 | + if args.pool: |
| 266 | + net = mx.sym.Pooling(data=net, pool_type="max", kernel=(args.pool, 1), stride=(1, 1)) |
| 267 | + |
| 268 | + for layer in args.dense: |
| 269 | + if layer: |
| 270 | + net = mx.sym.FullyConnected(data=net, num_hidden=layer) |
| 271 | + net = mx.sym.Activation(data=net, act_type=args.activation) |
| 272 | + if args.drop: |
| 273 | + net = mx.sym.Dropout(data=net, p=args.drop) |
| 274 | + net = mx.sym.FullyConnected(data=net, num_hidden=1) |
| 275 | + net = mx.symbol.LinearRegressionOutput(data=net, label=out) |
| 276 | + |
| 277 | + plot_network(net, 'net'+ext) |
| 278 | + |
| 279 | + train_iter = ConcatDataIter(loader, batch_size=args.batch_size, num_data=args.train_samples) |
| 280 | + val_iter = ConcatDataIter(loader, partition='val', batch_size=args.batch_size, num_data=args.val_samples) |
| 281 | + |
| 282 | + devices = mx.cpu() |
| 283 | + if args.gpus: |
| 284 | + devices = [mx.gpu(i) for i in args.gpus] |
| 285 | + |
| 286 | + mod = mx.mod.Module(net, |
| 287 | + data_names=('concat_features',), |
| 288 | + label_names=('growth',), |
| 289 | + context=devices) |
| 290 | + |
| 291 | + mod.fit(train_iter, eval_data=val_iter, |
| 292 | + eval_metric=args.loss, |
| 293 | + optimizer=args.optimizer, |
| 294 | + num_epoch=args.epochs, |
| 295 | + batch_end_callback = mx.callback.Speedometer(args.batch_size, 20)) |
| 296 | + |
| 297 | + |
| 298 | +if __name__ == '__main__': |
| 299 | + main() |
0 commit comments