|
| 1 | +# tensoflow.__init__ calls _os.path.basename(_sys.argv[0]) |
| 2 | +# so we need to create a synthetic argv. |
| 3 | +import sys |
| 4 | +if not hasattr(sys, 'argv'): |
| 5 | + sys.argv = ['p1b1'] |
| 6 | + |
| 7 | +import json |
| 8 | +import os |
| 9 | +import p1b1 |
| 10 | +import numpy as np |
| 11 | + |
| 12 | +DATA_TYPES = {type(np.float16): 'f16', type(np.float32): 'f32', type(np.float64): 'f64'} |
| 13 | + |
| 14 | +def write_params(params, hyper_parameter_map): |
| 15 | + parent_dir = hyper_parameter_map['instance_directory'] if 'instance_directory' in hyper_parameter_map else '.' |
| 16 | + f = "{}/parameters_p1b1.txt".format(parent_dir) |
| 17 | + with open(f, "w") as f_out: |
| 18 | + f_out.write("[parameters]\n") |
| 19 | + for k,v in params.items(): |
| 20 | + if type(v) in DATA_TYPES: |
| 21 | + v = DATA_TYPES[type(v)] |
| 22 | + if isinstance(v, basestring): |
| 23 | + v = "'{}'".format(v) |
| 24 | + f_out.write("{}={}\n".format(k, v)) |
| 25 | + |
| 26 | +def is_numeric(val): |
| 27 | + try: |
| 28 | + float(val) |
| 29 | + return True |
| 30 | + except ValueError: |
| 31 | + return False |
| 32 | + |
| 33 | +def format_params(hyper_parameter_map): |
| 34 | + for k,v in hyper_parameter_map.items(): |
| 35 | + vals = str(v).split(" ") |
| 36 | + if len(vals) > 1 and is_numeric(vals[0]): |
| 37 | + # assume this should be a list |
| 38 | + if "." in vals[0]: |
| 39 | + hyper_parameter_map[k] = [float(x) for x in vals] |
| 40 | + else: |
| 41 | + hyper_parameter_map[k] = [int(x) for x in vals] |
| 42 | + |
| 43 | + |
| 44 | +def run(hyper_parameter_map): |
| 45 | + framework = hyper_parameter_map['framework'] |
| 46 | + if framework is 'keras': |
| 47 | + import p1b1_baseline_keras2 |
| 48 | + pkg = p1b1_baseline_keras2 |
| 49 | + elif framework is 'mxnet': |
| 50 | + import p1b1_baseline_mxnet |
| 51 | + pkg = p1b1_baseline_mxnet |
| 52 | + elif framework is 'neon': |
| 53 | + import p1b1_baseline_neon |
| 54 | + pkg = p1b1_baseline_neon |
| 55 | + else: |
| 56 | + raise ValueError("Invalid framework: {}".format(framework)) |
| 57 | + |
| 58 | + # params is python dictionary |
| 59 | + sys.argv = ['fail here', '--epochs', '54321'] |
| 60 | + params = pkg.initialize_parameters() |
| 61 | + format_params(hyper_parameter_map) |
| 62 | + |
| 63 | + for k,v in hyper_parameter_map.items(): |
| 64 | + #if not k in params: |
| 65 | + # raise Exception("Parameter '{}' not found in set of valid arguments".format(k)) |
| 66 | + params[k] = v |
| 67 | + |
| 68 | + print(params) |
| 69 | + write_params(params, hyper_parameter_map) |
| 70 | + history = pkg.run(params) |
| 71 | + |
| 72 | + if framework is 'keras': |
| 73 | + # works around this error: |
| 74 | + # https://github.com/tensorflow/tensorflow/issues/3388 |
| 75 | + try: |
| 76 | + from keras import backend as K |
| 77 | + K.clear_session() |
| 78 | + except AttributeError: # theano does not have this function |
| 79 | + pass |
| 80 | + |
| 81 | + # use the last validation_loss as the value to minimize |
| 82 | + val_loss = history.history['val_loss'] |
| 83 | + return val_loss[-1] |
| 84 | + |
| 85 | +def write_output(result, instance_directory): |
| 86 | + with open('{}/result.txt'.format(instance_directory), 'w') as f_out: |
| 87 | + f_out.write("{}\n".format(result)) |
| 88 | + |
| 89 | +def init(param_file, instance_directory): |
| 90 | + with open(param_file) as f_in: |
| 91 | + hyper_parameter_map = json.load(f_in) |
| 92 | + |
| 93 | + hyper_parameter_map['framework'] = 'keras' |
| 94 | + hyper_parameter_map['save'] = '{}/output'.format(instance_directory) |
| 95 | + hyper_parameter_map['instance_directory'] = instance_directory |
| 96 | + |
| 97 | + return hyper_parameter_map |
| 98 | + |
| 99 | +if __name__ == '__main__': |
| 100 | + print('p1b1_runner main ' + str(argv)) |
| 101 | + param_file = sys.argv[1] |
| 102 | + instance_directory = sys.argv[2] |
| 103 | + hyper_parameter_map = init(param_file, instance_directory) |
| 104 | + # clear sys.argv so that argparse doesn't object |
| 105 | + sys.argv = ['p1b1_runner'] |
| 106 | + result = run(hyper_parameter_map) |
| 107 | + write_output(result, instance_directory) |
0 commit comments