Skip to content

Commit bb6f493

Browse files
committed
Added examples/multiple_objective.py
1 parent e5c24b3 commit bb6f493

File tree

1 file changed

+120
-0
lines changed

1 file changed

+120
-0
lines changed

examples/multiple_objective.py

Lines changed: 120 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,120 @@
1+
import numpy as np
2+
import highspy
3+
4+
hscb = highspy.cb
5+
6+
h = highspy.Highs()
7+
h.setOptionValue("output_flag", False);
8+
9+
inf = highspy.kHighsInf
10+
lp = highspy.HighsLp()
11+
lp.num_col_ = 2
12+
lp.num_row_ = 3
13+
lp.col_cost_ = np.array([0, 0], dtype=np.double)
14+
lp.col_lower_ = np.array([0, 0], dtype=np.double)
15+
lp.col_upper_ = np.array([inf, inf], dtype=np.double)
16+
lp.row_lower_ = np.array([-inf, -inf, -inf], dtype=np.double)
17+
lp.row_upper_ = np.array([18, 8, 14], dtype=np.double)
18+
lp.a_matrix_.start_ = np.array([0, 3, 6])
19+
lp.a_matrix_.index_ = np.array([0, 1, 2, 0, 1, 2])
20+
lp.a_matrix_.value_ = np.array([3, 1, 1, 1, 1, 2], dtype=np.double)
21+
h.passModel(lp)
22+
# LP constraints are
23+
#
24+
# 3x + y <= 18
25+
#
26+
# x + y <= 8
27+
#
28+
# x + 2y <= 14
29+
linear_objective0 = highspy.HighsLinearObjective()
30+
linear_objective0.weight = -1
31+
linear_objective0.offset = -1
32+
linear_objective0.coefficients = np.array([1, 1], dtype=np.double)
33+
linear_objective0.abs_tolerance = 0
34+
linear_objective0.rel_tolerance = 0
35+
linear_objective0.priority = 10
36+
37+
linear_objective1 = highspy.HighsLinearObjective()
38+
linear_objective1.weight = 1e-4
39+
linear_objective1.offset = 0
40+
linear_objective1.coefficients = np.array([1, 0], dtype=np.double)
41+
linear_objective1.abs_tolerance = -1
42+
linear_objective1.rel_tolerance = -1
43+
linear_objective1.priority = 0
44+
45+
h.addLinearObjective(linear_objective0)
46+
h.addLinearObjective(linear_objective1)
47+
# Objectives
48+
#
49+
# f0: x + y - 1 (weight -1)
50+
#
51+
# f1: x (weight 1e-4)
52+
#
53+
# With objective min -f0 (since its weight is -1) the LP has nonunique
54+
# optimal solutions on the line joining (2, 6) and (5, 3)
55+
#
56+
# Blending -f0 + 1e-4 f1 minimizes x along the line joining (2, 6) and
57+
# (5, 3) to give optimal solution at (2, 6) with objective -7
58+
h.run()
59+
solution = h.getSolution()
60+
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]}) for min -f0 + 1e-4 f1")
61+
62+
# Switch to lexicographic optimization
63+
h.setOptionValue("blend_multi_objectives", False);
64+
65+
linear_objective0.coefficients = np.array([1.0001, 1], dtype=np.double)
66+
linear_objective0.abs_tolerance = 1e-5;
67+
linear_objective0.rel_tolerance = 0.05;
68+
linear_objective1.weight = 1e-3
69+
70+
h.clearLinearObjectives()
71+
h.addLinearObjective(linear_objective0)
72+
h.addLinearObjective(linear_objective1)
73+
# Objectives
74+
#
75+
# f0 = 1.0001 x + y - 1 (with priority 10 and absolute tolerance 1e-5)
76+
#
77+
# f1 = x (with priority 0)
78+
#
79+
# Lexicographically: HiGHS
80+
#
81+
# minimizes f0 (to give objective 7.0005)
82+
#
83+
# adds a constraint that
84+
#
85+
# 1.0001 x + y - 1 >= 7.0005 - 1e-5 => 1.0001 x + y >= 8.00049
86+
#
87+
# to ensure that the initial objective is within 1e-5 of its optimal
88+
# value
89+
#
90+
# minimizes f1 to give optimal solution at (4.90000, 3.10000) - where
91+
# x + y = 8 and 1.0001 x + y = 8.00049
92+
93+
h.run()
94+
solution = h.getSolution()
95+
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]}) for min f1 and 1.0001 x + y >= 8.00049")
96+
97+
linear_objective0.abs_tolerance = -1;
98+
h.clearLinearObjectives()
99+
h.addLinearObjective(linear_objective0)
100+
h.addLinearObjective(linear_objective1)
101+
# Objectives as before, but absolute tolerence for f0 now -1 (negative
102+
# => ignored) so relative tolerance of 0.05 is used
103+
#
104+
# Lexicographically: HiGHS
105+
#
106+
# minimizes f0 (to give objective 7.0005)
107+
#
108+
# adds a constraint that
109+
#
110+
# 1.0001 x + y - 1 >= 7.0005 * 0.95 => 1.0001 x + y >= 7.650475
111+
#
112+
# to ensure that the initial objective 95% of its optimal value
113+
#
114+
# minimizes f1 to give optimal solution at (1.30069, 6.34966) - where
115+
# x + y = 8 and 1.0001 x + y = 7.650475
116+
h.run()
117+
solution = h.getSolution()
118+
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]}) for min f1 and 1.0001 x + y = 7.650475")
119+
120+

0 commit comments

Comments
 (0)