Skip to content

Commit be43f29

Browse files
authored
Ramona biomass extract udp (#250)
new UDP generating country size COG at 10m updates validation check: openEO allows use of uppercase in process id https://api.openeo.org/#tag/User-Defined-Processes/operation/validate-custom-process
1 parent f455f45 commit be43f29

File tree

8 files changed

+546
-1
lines changed

8 files changed

+546
-1
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
[
2+
{
3+
"id": "ramona_benin",
4+
"type": "openeo",
5+
"description": "extract for Benin",
6+
"backend": "openeo.dataspace.copernicus.eu",
7+
"process_graph": {
8+
"RAMONA-herbaceous_rangeland_biomass-country-mosaick": {
9+
"process_id": "RAMONA-herbaceous_rangeland_biomass-country-mosaick",
10+
"arguments": {
11+
"year": "2022",
12+
"month": "06",
13+
"country": "benin"
14+
},
15+
"result": true,
16+
"namespace": "https://raw.githubusercontent.com/ESA-APEx/apex_algorithms/8efbe040499e0108a6ed7fce5ca92a3f08115a7f/algorithm_catalog/dhi/RAMONA-herbaceous_rangeland_biomass-country-mosaick/openeo_udp/RAMONA-herbaceous_rangeland_biomass-country-mosaick.json"
17+
}
18+
},
19+
"reference_data": {
20+
"job-results.json": "https://s3.waw3-1.cloudferro.com/apex-benchmarks/gh-15066001243!tests_test_benchmarks.py__test_run_benchmark_max_ndvi_!actual/job-results.json",
21+
"ramona_hrb.tif": "https://s3.waw3-1.cloudferro.com/apex-benchmarks/gh-15066001243!tests_test_benchmarks.py__test_run_benchmark_max_ndvi_!actual/openEO.tif"
22+
}
23+
}
24+
]
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,244 @@
1+
{
2+
"process_graph": {
3+
"textconcat1": {
4+
"process_id": "text_concat",
5+
"arguments": {
6+
"data": [
7+
{
8+
"from_parameter": "year"
9+
},
10+
"-",
11+
{
12+
"from_parameter": "month"
13+
},
14+
"-01T00:00:00Z"
15+
]
16+
}
17+
},
18+
"dateshift1": {
19+
"process_id": "date_shift",
20+
"arguments": {
21+
"date": {
22+
"from_node": "textconcat1"
23+
},
24+
"unit": "day",
25+
"value": 1
26+
}
27+
},
28+
"loadstac1": {
29+
"process_id": "load_stac",
30+
"arguments": {
31+
"temporal_extent": [
32+
{
33+
"from_node": "textconcat1"
34+
},
35+
{
36+
"from_node": "dateshift1"
37+
}
38+
],
39+
"url": "https://stac.openeo.vito.be/collections/RAMONA_HERBACEOUS_BIOMASS"
40+
}
41+
},
42+
"textconcat2": {
43+
"process_id": "text_concat",
44+
"arguments": {
45+
"data": [
46+
"https://raw.githubusercontent.com/georgique/world-geojson/refs/heads/develop/countries/",
47+
{
48+
"from_parameter": "country"
49+
},
50+
".json"
51+
]
52+
}
53+
},
54+
"loadurl1": {
55+
"process_id": "load_url",
56+
"arguments": {
57+
"format": "GeoJSON",
58+
"url": {
59+
"from_node": "textconcat2"
60+
}
61+
}
62+
},
63+
"filterspatial1": {
64+
"process_id": "filter_spatial",
65+
"arguments": {
66+
"data": {
67+
"from_node": "loadstac1"
68+
},
69+
"geometries": {
70+
"from_node": "loadurl1"
71+
}
72+
}
73+
},
74+
"apply1": {
75+
"process_id": "apply",
76+
"arguments": {
77+
"data": {
78+
"from_node": "filterspatial1"
79+
},
80+
"process": {
81+
"process_graph": {
82+
"linearscalerange1": {
83+
"process_id": "linear_scale_range",
84+
"arguments": {
85+
"inputMax": 31000,
86+
"inputMin": -10,
87+
"outputMax": 31000,
88+
"outputMin": -10,
89+
"x": {
90+
"from_parameter": "x"
91+
}
92+
},
93+
"result": true
94+
}
95+
}
96+
}
97+
}
98+
},
99+
"dropdimension1": {
100+
"process_id": "drop_dimension",
101+
"arguments": {
102+
"data": {
103+
"from_node": "apply1"
104+
},
105+
"name": "t"
106+
}
107+
},
108+
"saveresult1": {
109+
"process_id": "save_result",
110+
"arguments": {
111+
"data": {
112+
"from_node": "dropdimension1"
113+
},
114+
"format": "GTiff",
115+
"options": {
116+
"filename_prefix": "ramona_hrb",
117+
"overviews": "AUTO",
118+
"tile_size": 512,
119+
"bands_metadata": {
120+
"biomass": {
121+
"SCALE": 0.01,
122+
"Unit": "g DW per m2 per month"
123+
}
124+
}
125+
}
126+
},
127+
"result": true
128+
}
129+
},
130+
"id": "RAMONA-herbaceous_rangeland_biomass-country-mosaick",
131+
"description": "# RAMONA - Herbaceous Rangeland Biomass (HRB) - Country Level Mosaick\n\nFor a selected African country, year and month, the process returns a mosaic of the monthly HRB products as a single GeoTIFF.\n\nThis is an example output for Benin:\n\n![Benin](https://github.com/ESA-APEx/apex_algorithms/blob/503edd5ef736b740bccb52f946530b33b85f9ee9/algorithm_catalog/dhi/ramona_biomass_extract/openeo_udp/benin_extract.png)\n\n## Methodology\n\nMonthly HRB input files are mosaicked and exported as a GeoTIFF. The RAMONA HRB products have been precomputed. The products were generated for the target year 2022 and specifically from Aug-2021 to January-2023. \n\nMore information can be found at [https://www.ramona.earth/](https://www.ramona.earth/)\n\n## Performance\n\nThe table below lists cost and timings of test runs. You may see (small) deviations from this\nin your own runs.\n\n| Country | Wall time | Credit cost |\n|----------|-------------|-------------|\n| Benin | 3.5 minutes | 6 |\n| Cameroon | 9 minutes | 26 |\n| Ethiopia | 20 minutes | 64 |\n",
132+
"default_job_options": {
133+
"driver-memory": "15G",
134+
"executor-memory": "6G",
135+
"python-memory": "50m",
136+
"executor-memoryOverhead": "1500m",
137+
"driver-memoryOverhead": "5G"
138+
},
139+
"parameters": [
140+
{
141+
"name": "country",
142+
"description": "Country for which data is to be extracted.",
143+
"schema": {
144+
"type": "string",
145+
"enum": [
146+
"algeria",
147+
"angola",
148+
"benin",
149+
"botswana",
150+
"burkina_faso",
151+
"burundi",
152+
"cameroon",
153+
"cape_verde",
154+
"central_african_republic",
155+
"chad",
156+
"comoros",
157+
"congo",
158+
"democratic_congo",
159+
"djibouti",
160+
"egypt",
161+
"equatorial_guinea",
162+
"eritrea",
163+
"eswatini",
164+
"ethiopia",
165+
"gabon",
166+
"gambia",
167+
"ghana",
168+
"guinea",
169+
"guinea_bissau",
170+
"ivory_coast",
171+
"kenya",
172+
"lesotho",
173+
"liberia",
174+
"libya",
175+
"madagascar",
176+
"malawi",
177+
"mali",
178+
"mauritania",
179+
"mauritius",
180+
"morocco",
181+
"mozambique",
182+
"namibia",
183+
"niger",
184+
"nigeria",
185+
"rwanda",
186+
"sao_tome_and_principe",
187+
"senegal",
188+
"seychelles",
189+
"sierra_leone",
190+
"somalia",
191+
"south_africa",
192+
"south_sudan",
193+
"sudan",
194+
"tanzania",
195+
"togo",
196+
"tunisia",
197+
"uganda",
198+
"western_sahara",
199+
"zambia",
200+
"zimbabwe"
201+
]
202+
},
203+
"default": "benin",
204+
"optional": true
205+
},
206+
{
207+
"name": "year",
208+
"description": "year",
209+
"schema": {
210+
"type": "string",
211+
"enum": [
212+
"2021",
213+
"2022",
214+
"2023"
215+
]
216+
},
217+
"default": "2021",
218+
"optional": true
219+
},
220+
{
221+
"name": "month",
222+
"description": "Data is available between august 2021 and januari 2023.",
223+
"schema": {
224+
"type": "string",
225+
"enum": [
226+
"01",
227+
"02",
228+
"03",
229+
"04",
230+
"05",
231+
"06",
232+
"07",
233+
"08",
234+
"09",
235+
"10",
236+
"11",
237+
"12"
238+
]
239+
},
240+
"default": "10",
241+
"optional": true
242+
}
243+
]
244+
}
Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
# RAMONA - Herbaceous Rangeland Biomass (HRB) - Country Level Mosaick
2+
3+
For a selected African country, year and month, the process returns a mosaic of the monthly HRB products as a single GeoTIFF.
4+
5+
This is an example output for Benin:
6+
7+
![Benin](https://github.com/ESA-APEx/apex_algorithms/blob/503edd5ef736b740bccb52f946530b33b85f9ee9/algorithm_catalog/dhi/ramona_biomass_extract/openeo_udp/benin_extract.png)
8+
9+
## Methodology
10+
11+
Monthly HRB input files are mosaicked and exported as a GeoTIFF. The RAMONA HRB products have been precomputed. The products were generated for the target year 2022 and specifically from Aug-2021 to January-2023.
12+
13+
More information can be found at [https://www.ramona.earth/](https://www.ramona.earth/)
14+
15+
## Performance
16+
17+
The table below lists cost and timings of test runs. You may see (small) deviations from this
18+
in your own runs.
19+
20+
| Country | Wall time | Credit cost |
21+
|----------|-------------|-------------|
22+
| Benin | 3.5 minutes | 6 |
23+
| Cameroon | 9 minutes | 26 |
24+
| Ethiopia | 20 minutes | 64 |
1.39 MB
Loading

0 commit comments

Comments
 (0)