@@ -104,7 +104,7 @@ <h2>Basis Function Expansions for N-body Dynamical Simulations</h2>
104104 < p > Your paper links here!</ p >
105105 </ article >
106106 < article class ="thumb ">
107- < a href ="images/fulls/6 .png " class ="image "> < img src ="images/thumbs/6 .jpg " alt ="" /> </ a >
107+ < a href ="images/fulls/8 .png " class ="image "> < img src ="images/thumbs/8 .jpg " alt ="" /> </ a >
108108 < h2 > Basis Function Expansions for Observational Insight</ h2 >
109109 < p > Two dimensional basis function expansions can also be performed on observational data. Such 2D expansions
110110 on image data describe the light (stellar) distribution in a galaxy, and provide a language for succinctly,
@@ -118,7 +118,7 @@ <h2>Basis Function Expansions for Observational Insight</h2>
118118 galaxies > </ a > + blurb</ p >
119119 </ article >
120120 < article class ="thumb ">
121- < a href ="images/fulls/7 .png " class ="image "> < img src ="images/thumbs/7 .png " alt ="" /> </ a >
121+ < a href ="images/fulls/3 .png " class ="image "> < img src ="images/thumbs/3 .png " alt ="" /> </ a >
122122 < h2 > Basis Function Expansions for Sonification</ h2 >
123123 < p > The light profile of a galaxy image can be described with a Fourier-Laguerre basis function expansion.
124124 The resulting expansion has both angular (Fourier, m) terms and radial (Laguerre, n) terms and a series
@@ -133,7 +133,7 @@ <h2>Basis Function Expansions for Sonification</h2>
133133 classification skills! </ p >
134134 </ article >
135135 < article class ="thumb ">
136- < a href ="images/fulls/8 .png " class ="image "> < img src ="images/thumbs/8 .png " alt ="" /> </ a >
136+ < a href ="images/fulls/7 .png " class ="image "> < img src ="images/thumbs/7 .png " alt ="" /> </ a >
137137 < h2 > How to get started</ h2 >
138138 < p > We have built and compiled a variety of resources to help you get started with EXP and basis function expansions!</ p >
139139
0 commit comments