@@ -5,15 +5,15 @@ It generates n_MC samples for each site, and uses these to compute the
55expected value of the likelihood of observations.
66
77## Arguments
8- - rng: random number generator (ignored on CUDA, if ϕ is a AbstactGPUArray )
8+ - rng: random number generator (ignored on CUDA, if ϕ is a AbstractGPUArray )
99- g: machine learnig model
1010- f: mechanistic model
1111- ϕ: flat vector of parameters
1212 including parameter of f (ϕ_P), of g (ϕ_Ms), and of VI (ϕ_unc),
1313 interpreted by interpreters.μP_ϕg_unc and interpreters.PMs
1414- y_ob: matrix of observations (n_obs x n_site_batch)
1515- x: matrix of covariates (n_cov x n_site_batch)
16- - transPMs: Transformations with componets P, Ms, similar to interpreters
16+ - transPMs: Transformations with components P, Ms, similar to interpreters
1717- n_MC: number of MonteCarlo samples from the distribution of parameters to simulate
1818 using the mechanistic model f.
1919- logσ2y: observation uncertainty (log of the variance)
3838 get_transPMs, get_ca_int_PMs, n_sample_pred=200,
3939 gpu_data_handler=get_default_GPUHandler())
4040
41- Prediction function for hybrid model. Retuns an Array `(n_obs, n_site, n_sample_pred)`.
41+ Prediction function for hybrid model. Returns an Array `(n_obs, n_site, n_sample_pred)`.
4242"""
4343function predict_gf (rng, g, f, ϕ:: AbstractVector , xM:: AbstractMatrix , interpreters;
4444 get_transPMs, get_ca_int_PMs, n_sample_pred= 200 ,
@@ -81,7 +81,7 @@ function generate_ζ(rng, g, f, ϕ::AbstractVector, x::AbstractMatrix,
8181end
8282
8383"""
84- Extract relevant parameters from θ and return n_MC generted draws
84+ Extract relevant parameters from θ and return n_MC generated draws
8585together with the logdet of the transformation.
8686
8787Necessary typestable information on number of compponents are provided with
0 commit comments