Skip to content

Commit b1f41a6

Browse files
committed
typo
1 parent fa44a26 commit b1f41a6

File tree

3 files changed

+3
-3
lines changed

3 files changed

+3
-3
lines changed

src/cholesky.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -279,7 +279,7 @@ Transform a parameterization v of a blockdiagonal of upper triangular matrices
279279
into the this matrix.
280280
`cor_starts` is a NTuple of Integeres specifying the first column of each block.
281281
E.g. For a matrix with a 3x3, a 2x2, and another block,
282-
the blocks start at colums (1,4,6). It defaults to a single entire block.
282+
the blocks start at columns (1,4,6). It defaults to a single entire block.
283283
"""
284284
function transformU_block_cholesky1(v::AbstractVector, cor_starts = (1,))
285285
cor_starts_end = (cor_starts..., length(v)+1)

src/hybrid_case.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ Returns a NamedTuple.
142142
Subsets ofparameters that are correlated with other but not correlated with
143143
parameters of other subranges are specified by indicating the starting position
144144
of each subrange.
145-
E.g. if withing global parameter vector `(p1, p2, p3)`, `p1` and `p2` are correlated,
145+
E.g. if within global parameter vector `(p1, p2, p3)`, `p1` and `p2` are correlated,
146146
but parameter `p3` is not correlated with them,
147147
then the first subrange starts at position 1 and the second subrange starts at position 3.
148148
If there is only single block of all ML-predicted parameters being correlated

test/test_doubleMM.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ end
8080

8181
# Pass the site-data for the batches as separate vectors wrapped in a tuple
8282
train_loader = MLUtils.DataLoader((xM, xP, y_o, y_unc), batchsize = n_batch)
83-
# get_hybridcase_train_dataloader recreates synthetic data differetn θ_true
83+
# get_hybridcase_train_dataloader recreates synthetic data different θ_true
8484
#train_loader = get_hybridcase_train_dataloader(case, rng; scenario)
8585

8686
loss_gf = get_loss_gf(g, transM, f, y_global_o, int_ϕθP)

0 commit comments

Comments
 (0)