@@ -296,7 +296,7 @@ function generate_ζ(rng, g, ϕ::AbstractVector{FT}, xM::MT;
296296 xMP0 = _append_each_covars (xM, CA. getdata (μ_ζP), pbm_covar_indices)
297297 # Main.@infiltrate_main
298298
299- μ_ζMs0 = g (xMP0, ϕg):: MT # for gpu restructure returns Any, so apply type
299+ μ_ζMs0 = g (xMP0, ϕg)
300300 ζP_resids, ζMs_parfirst_resids, σ = sample_ζresid_norm (rng, μ_ζP, μ_ζMs0, ϕc. unc; n_MC, cor_ends, int_unc)
301301 if pbm_covar_indices isa SA. SVector{0 }
302302 # do not need to predict again but just add the residuals to μ_ζP and μ_ζMs
@@ -308,7 +308,7 @@ function generate_ζ(rng, g, ϕ::AbstractVector{FT}, xM::MT;
308308 ζP = μ_ζP .+ rP
309309 # second pass: append ζP rather than μ_ζP to covars to xM
310310 xMP = _append_each_covars (xM, CA. getdata (ζP), pbm_covar_indices)
311- μ_ζMst = g (xMP, ϕg):: MT # for gpu restructure returns Any, so apply type
311+ μ_ζMst = g (xMP, ϕg)
312312 ζMs = (μ_ζMst .+ rMs)' # already transform to par-last form
313313 ζP, ζMs
314314 end
@@ -356,26 +356,27 @@ function get_pbm_covar_indices(ζP, pbm_covars::NTuple{0},
356356 SA. SA[]
357357end
358358
359- # function _predict_μ_ζMs(xM, ζP, pbm_covars::NTuple{N,Symbol}, g, ϕg, μ_ζMs0) where N
360- # xMP2 = _append_PBM_covars(xM, ζP, pbm_covars) # need different variable name?
359+ # remove?
360+ # # function _predict_μ_ζMs(xM, ζP, pbm_covars::NTuple{N,Symbol}, g, ϕg, μ_ζMs0) where N
361+ # # xMP2 = _append_PBM_covars(xM, ζP, pbm_covars) # need different variable name?
362+ # # μ_ζMs = g(xMP2, ϕg)
363+ # # end
364+ # # function _predict_μ_ζMs(xM, ζP, pbm_covars::NTuple{0}, g, ϕg, μ_ζMs0)
365+ # # # if pbm_covars is the empty tuple, just return the original prediction on xM only
366+ # # # rather than calling the ML model
367+ # # μ_ζMs0
368+ # # end
369+
370+ # function _predict_μ_ζMs(xM, ζP, pbm_covar_indices::AbstractVector, g, ϕg, μ_ζMs0)
371+ # xMP2 = _append_each_covars(xM, CA.getdata(ζP), pbm_covar_indices)
361372# μ_ζMs = g(xMP2, ϕg)
362373# end
363- # function _predict_μ_ζMs(xM, ζP, pbm_covars::NTuple {0}, g, ϕg, μ_ζMs0)
374+ # function _predict_μ_ζMs(xM, ζP, pbm_covars_indices::SA.StaticVector {0}, g, ϕg, μ_ζMs0)
364375# # if pbm_covars is the empty tuple, just return the original prediction on xM only
365376# # rather than calling the ML model
366377# μ_ζMs0
367378# end
368379
369- function _predict_μ_ζMs (xM, ζP, pbm_covar_indices:: AbstractVector , g, ϕg, μ_ζMs0)
370- xMP2 = _append_each_covars (xM, CA. getdata (ζP), pbm_covar_indices)
371- μ_ζMs = g (xMP2, ϕg)
372- end
373- function _predict_μ_ζMs (xM, ζP, pbm_covars_indices:: SA.StaticVector{0} , g, ϕg, μ_ζMs0)
374- # if pbm_covars is the empty tuple, just return the original prediction on xM only
375- # rather than calling the ML model
376- μ_ζMs0
377- end
378-
379380"""
380381Extract relevant parameters from ζ and return n_MC generated multivariate normal draws
381382together with the vector of standard deviations, `σ`: `(ζP_resids, ζMs_parfirst_resids, σ)`
0 commit comments