@@ -72,7 +72,7 @@ methods that enable users to perform factor analysis and score new data
7272using the fitted factor model. Users can also perform optional otations
7373on a factor loading matrix using the ``Rotator `` class.
7474
75- The following `rotations options are available in both ``FactorAnalyzer ``
75+ The following rotation options are available in both ``FactorAnalyzer ``
7676and ``Rotator ``:
7777
7878 (a) varimax (orthogonal rotation)
@@ -108,8 +108,8 @@ Exploratory factor analysis example.
108108 In [4 ]: fa.fit(df_features)
109109 Out[4 ]:
110110 FactorAnalyzer(bounds = (0.005 , 1 ), impute = ' median' , is_corr_matrix = False ,
111- method = ' minres' , n_factors = 3 , rotation = None , rotation_kwargs = {},
112- use_smc = True )
111+ method = ' minres' , n_factors = 3 , rotation = None , rotation_kwargs = {},
112+ use_smc = True )
113113
114114 In [5 ]: fa.loadings_
115115 Out[5 ]:
@@ -142,7 +142,8 @@ Confirmatory factor analysis example.
142142
143143 In [4 ]: model_dict = {" F1" : [" V1" , " V2" , " V3" , " V4" ],
144144 ... : " F2" : [" V5" , " V6" , " V7" , " V8" ]}
145- In [5 ]: model_spec = ModelSpecificationParser.parse_model_specification_from_dict(df_features, model_dict)
145+ In [5 ]: model_spec = ModelSpecificationParser.parse_model_specification_from_dict(df_features,
146+ ... : model_dict)
146147
147148 In [6 ]: cfa = ConfirmatoryFactorAnalyzer(model_spec, disp = False )
148149
0 commit comments