@@ -618,7 +618,7 @@ def objective(self,
618618
619619 # if `fix_first` is False, then standardize the factor
620620 # covariance matrix to the correlation matrix
621- if not self . fix_first :
621+ else :
622622 factor_varcov_init = covariance_to_correlation (factor_varcov_init )
623623
624624 # calculate sigma-theta, needed for the objective function
@@ -791,7 +791,7 @@ def analyze(self,
791791 "but you have not specified the number of observations "
792792 "(`n_obs=None`). Therefore, a reduced version of the "
793793 "objective function will be used (Bollen, 1989 p.107). "
794- "The AIC and BIC metrics may not be correct." )
794+ "The AIC, BIC, and standard errors may not be correct." )
795795
796796 # we set a bunch of instance-level variables that will be
797797 # referenced primarily by the objective function
@@ -862,7 +862,7 @@ def analyze(self,
862862 # on the loading matrix boundaries, too, but the case in R and SAS
863863 if bounds is not None :
864864 error_msg = ('The length of `bounds` must equal the length of your '
865- 'input array `x0`: {} != {}.' .format (len (bounds ), len (x0 )))
865+ 'input array `x0`: {} != {}.' .format (len (bounds ), len (x0 )))
866866 assert len (bounds ) == len (x0 ), error_msg
867867
868868 # fit the actual model using L-BFGS algorithm;
0 commit comments