|
| 1 | +from fixtures import * # noqa: F401,F403 |
| 2 | +from hashlib import sha256 |
| 3 | +from pyln.client import RpcError |
| 4 | +from pyln.testing.utils import SLOW_MACHINE |
| 5 | +from utils import ( |
| 6 | + only_one, first_scid, GenChannel, generate_gossip_store, |
| 7 | + sync_blockheight, wait_for, TEST_NETWORK, TIMEOUT |
| 8 | +) |
| 9 | +import copy |
| 10 | +import os |
| 11 | +import pytest |
| 12 | +import subprocess |
| 13 | +import time |
| 14 | +import tempfile |
| 15 | +import random |
| 16 | +import json |
| 17 | + |
| 18 | +@pytest.mark.slow_test |
| 19 | +def test_real_data(node_factory, bitcoind): |
| 20 | + outfile = tempfile.NamedTemporaryFile(prefix='gossip-store-') |
| 21 | + subprocess.check_output(['devtools/gossmap-compress', |
| 22 | + 'decompress', |
| 23 | + 'tests/data/gossip-store-2024-09-22.compressed', |
| 24 | + outfile.name]) |
| 25 | + |
| 26 | + # This is in msat, but is also the size of channel we create. |
| 27 | + AMOUNT = 100000000 |
| 28 | + |
| 29 | + l1 = node_factory.line_graph(1, fundamount=AMOUNT, |
| 30 | + opts=[{'gossip_store_file': outfile.name, |
| 31 | + 'allow_warning': True, |
| 32 | + 'dev-throttle-gossip': None}])[0] |
| 33 | + |
| 34 | + # node selection |
| 35 | + all_nodes = [] |
| 36 | + all_chans = l1.rpc.listchannels()["channels"] |
| 37 | + |
| 38 | + node_dict = {} |
| 39 | + for c in all_chans: |
| 40 | + n = c["source"] |
| 41 | + if n not in node_dict: |
| 42 | + node_dict[n] = {"id": n, "num_chans": 0, "capacity": 0} |
| 43 | + node_dict[n]["num_chans"] += 1 |
| 44 | + node_dict[n]["capacity"] += c["amount_msat"] |
| 45 | + |
| 46 | + all_nodes = [ data for n, data in node_dict.items() ] |
| 47 | + |
| 48 | + all_nodes.sort(key=lambda n: n["capacity"]) |
| 49 | + |
| 50 | + N = len(all_nodes) |
| 51 | + all_small = all_nodes[int(0.10*N): int(0.35 * N)] |
| 52 | + all_big = all_nodes[int(0.65*N): int(0.90*N)] |
| 53 | + |
| 54 | + random.seed(42) |
| 55 | + amounts = [100, 1000, 10000, 100000, 1000000] |
| 56 | + num_samples = 100 |
| 57 | + datapoints = [] |
| 58 | + |
| 59 | + def routes_fee(routes): |
| 60 | + pay = 0 |
| 61 | + deliver = 0 |
| 62 | + for r in routes["routes"]: |
| 63 | + deliver += r["amount_msat"] |
| 64 | + pay += r["path"][0]["amount_msat"] |
| 65 | + return pay - deliver |
| 66 | + |
| 67 | + def run_sim(node_set, amt_msat, repeat, version, sample_name, data): |
| 68 | + for rep in range(repeat): |
| 69 | + print(f"BENCHMARK: running repetition {rep}, sample {sample_name} and amount {amt_msat}") |
| 70 | + # 0.5% or 5sat is the norm |
| 71 | + MAX_FEE = max(amt_msat // 200, 5000) |
| 72 | + node_sample = copy.deepcopy(node_set) |
| 73 | + src = {} |
| 74 | + dst = {} |
| 75 | + print("BENCHMARK: Selecting source node") |
| 76 | + while len(node_sample)>0: |
| 77 | + src_index = random.randint(0, len(node_sample)-1) |
| 78 | + src = copy.deepcopy(node_sample[src_index]) |
| 79 | + node_sample.pop(src_index) |
| 80 | + if src["capacity"]>=amt_msat: |
| 81 | + break |
| 82 | + print("BENCHMARK: Selecting destination node") |
| 83 | + while len(node_sample)>0: |
| 84 | + dst_index = random.randint(0, len(node_sample)-1) |
| 85 | + dst = copy.deepcopy(node_sample[dst_index]) |
| 86 | + node_sample.pop(dst_index) |
| 87 | + if dst["capacity"]>=amt_msat: |
| 88 | + break |
| 89 | + if dst=={} or src=={}: |
| 90 | + continue |
| 91 | + try: |
| 92 | + print("BENCHMARK: calling getroutes source=%s dest=%s" % |
| 93 | + (src["id"], dst["id"])) |
| 94 | + resp = l1.rpc.getroutes(source=src["id"], |
| 95 | + destination=dst["id"], |
| 96 | + amount_msat=amt_msat, |
| 97 | + layers=[], |
| 98 | + maxfee_msat=MAX_FEE, |
| 99 | + final_cltv=18) |
| 100 | + success = True |
| 101 | + except RpcError as e: |
| 102 | + success = False |
| 103 | + resp = e.error |
| 104 | + print(f"BENCHMARK: getroutes success {success}") |
| 105 | + line = l1.daemon.wait_for_log( |
| 106 | + "plugin-cln-askrene.*notify msg.*get_routes (completed|failed)") |
| 107 | + runtime = int(line.split()[-2]) |
| 108 | + this_data = {"runtime_msec": runtime, "amount_msat": amt_msat, |
| 109 | + "version": version, |
| 110 | + "sample": sample_name, "success": success} |
| 111 | + if success: |
| 112 | + this_data["probability"] = resp["probability_ppm"] * 1e-6 |
| 113 | + this_data["fee_msat"] = routes_fee(resp) |
| 114 | + else: |
| 115 | + this_data["probability"] = 0.0 |
| 116 | + this_data["fee_msat"] = 0 |
| 117 | + data.append(this_data) |
| 118 | + for amt_sat in amounts: |
| 119 | + run_sim(all_big, amt_sat*1000, num_samples, "default", "big", datapoints) |
| 120 | + run_sim(all_small, amt_sat*1000, num_samples, "default", "small", datapoints) |
| 121 | + with open("default_bench.json", "w") as fd: |
| 122 | + json.dump(datapoints, fd) |
0 commit comments