@@ -257,15 +257,14 @@ def sector_fuel_costs(
257257 agent_market = market .copy ()
258258 if len (technologies ) > 0 :
259259 for a in agents :
260- output_year = a .year
261260 agent_market ["consumption" ] = (market .consumption * a .quantity ).sel (
262- year = output_year
261+ year = a . year
263262 )
264263 commodity = is_fuel (technologies .comm_usage )
265264
266265 capacity = a .filter_input (
267266 a .assets .capacity ,
268- year = output_year ,
267+ year = a . year ,
269268 ).fillna (0.0 )
270269
271270 production = supply (
@@ -274,7 +273,7 @@ def sector_fuel_costs(
274273 technologies ,
275274 )
276275
277- prices = a .filter_input (market .prices , year = output_year )
276+ prices = a .filter_input (market .prices , year = a . year )
278277 fcons = consumption (
279278 technologies = technologies , production = production , prices = prices
280279 )
@@ -283,7 +282,7 @@ def sector_fuel_costs(
283282 data_agent ["agent" ] = a .name
284283 data_agent ["category" ] = a .category
285284 data_agent ["sector" ] = getattr (sector , "name" , "unnamed" )
286- data_agent ["year" ] = output_year
285+ data_agent ["year" ] = a . year
287286 data_agent = multiindex_to_coords (data_agent , "timeslice" ).to_dataframe (
288287 "fuel_consumption_costs"
289288 )
@@ -315,18 +314,17 @@ def sector_capital_costs(
315314
316315 if len (technologies ) > 0 :
317316 for a in agents :
318- output_year = a .year
319- capacity = a .filter_input (a .assets .capacity , year = output_year ).fillna (0.0 )
317+ capacity = a .filter_input (a .assets .capacity , year = a .year ).fillna (0.0 )
320318 data = a .filter_input (
321319 technologies [["cap_par" , "cap_exp" ]],
322- year = output_year ,
320+ year = a . year ,
323321 technology = capacity .technology ,
324322 )
325323 data_agent = distribute_timeslice (data .cap_par * (capacity ** data .cap_exp ))
326324 data_agent ["agent" ] = a .name
327325 data_agent ["category" ] = a .category
328326 data_agent ["sector" ] = getattr (sector , "name" , "unnamed" )
329- data_agent ["year" ] = output_year
327+ data_agent ["year" ] = a . year
330328 data_agent = multiindex_to_coords (data_agent , "timeslice" ).to_dataframe (
331329 "capital_costs"
332330 )
@@ -362,23 +360,22 @@ def sector_emission_costs(
362360 agent_market = market .copy ()
363361 if len (technologies ) > 0 :
364362 for a in agents :
365- output_year = a .year
366363 agent_market ["consumption" ] = (market .consumption * a .quantity ).sel (
367- year = output_year
364+ year = a . year
368365 )
369366
370- capacity = a .filter_input (a .assets .capacity , year = output_year ).fillna (0.0 )
367+ capacity = a .filter_input (a .assets .capacity , year = a . year ).fillna (0.0 )
371368 allemissions = a .filter_input (
372369 technologies .fixed_outputs ,
373370 commodity = is_pollutant (technologies .comm_usage ),
374371 technology = capacity .technology ,
375- year = output_year ,
372+ year = a . year ,
376373 )
377374 envs = is_pollutant (technologies .comm_usage )
378375 enduses = is_enduse (technologies .comm_usage )
379376 i = (np .where (envs ))[0 ][0 ]
380377 red_envs = envs [i ].commodity .values
381- prices = a .filter_input (market .prices , year = output_year , commodity = red_envs )
378+ prices = a .filter_input (market .prices , year = a . year , commodity = red_envs )
382379 production = supply (
383380 agent_market ,
384381 capacity ,
@@ -390,7 +387,7 @@ def sector_emission_costs(
390387 data_agent ["agent" ] = a .name
391388 data_agent ["category" ] = a .category
392389 data_agent ["sector" ] = getattr (sector , "name" , "unnamed" )
393- data_agent ["year" ] = output_year
390+ data_agent ["year" ] = a . year
394391 data_agent = multiindex_to_coords (data_agent , "timeslice" ).to_dataframe (
395392 "emission_costs"
396393 )
@@ -427,8 +424,7 @@ def sector_lcoe(sector: AbstractSector, market: xr.Dataset, **kwargs) -> pd.Data
427424 agents = retro if len (retro ) > 0 else new
428425 if len (technologies ) > 0 :
429426 for agent in agents :
430- output_year = agent .year
431- agent_market = market .sel (year = output_year ).copy ()
427+ agent_market = market .sel (year = agent .year ).copy ()
432428 agent_market ["consumption" ] = agent_market .consumption * agent .quantity
433429 included = [
434430 i
@@ -439,16 +435,15 @@ def sector_lcoe(sector: AbstractSector, market: xr.Dataset, **kwargs) -> pd.Data
439435 i for i in agent_market ["commodity" ].values if i not in included
440436 ]
441437 agent_market .loc [dict (commodity = excluded )] = 0
442- years = [output_year , agent .year ]
443- agent_market ["prices" ] = agent .filter_input (market ["prices" ], year = years )
438+ agent_market ["prices" ] = agent .filter_input (
439+ market ["prices" ], year = agent .year
440+ )
444441
445442 techs = agent .filter_input (
446443 technologies ,
447444 year = agent .year ,
448445 )
449- prices = agent_market ["prices" ].sel (
450- commodity = techs .commodity , year = agent .year
451- )
446+ prices = agent_market ["prices" ].sel (commodity = techs .commodity )
452447 demand = agent_market .consumption .sel (commodity = included )
453448 capacity = agent .filter_input (capacity_to_service_demand (demand , techs ))
454449 production = (
@@ -473,7 +468,7 @@ def sector_lcoe(sector: AbstractSector, market: xr.Dataset, **kwargs) -> pd.Data
473468 data_agent ["agent" ] = agent .name
474469 data_agent ["category" ] = agent .category
475470 data_agent ["sector" ] = getattr (sector , "name" , "unnamed" )
476- data_agent ["year" ] = output_year
471+ data_agent ["year" ] = agent . year
477472 data_agent = data_agent .fillna (0 )
478473 data_agent = multiindex_to_coords (data_agent , "timeslice" ).to_dataframe (
479474 "LCOE"
@@ -510,8 +505,7 @@ def sector_eac(sector: AbstractSector, market: xr.Dataset, **kwargs) -> pd.DataF
510505 agents = retro if len (retro ) > 0 else new
511506 if len (technologies ) > 0 :
512507 for agent in agents :
513- output_year = agent .year
514- agent_market = market .sel (year = output_year ).copy ()
508+ agent_market = market .sel (year = agent .year ).copy ()
515509 agent_market ["consumption" ] = agent_market .consumption * agent .quantity
516510 included = [
517511 i
@@ -522,16 +516,15 @@ def sector_eac(sector: AbstractSector, market: xr.Dataset, **kwargs) -> pd.DataF
522516 i for i in agent_market ["commodity" ].values if i not in included
523517 ]
524518 agent_market .loc [dict (commodity = excluded )] = 0
525- years = [output_year , agent .year ]
526- agent_market ["prices" ] = agent .filter_input (market ["prices" ], year = years )
519+ agent_market ["prices" ] = agent .filter_input (
520+ market ["prices" ], year = agent .year
521+ )
527522
528523 techs = agent .filter_input (
529524 technologies ,
530525 year = agent .year ,
531526 )
532- prices = agent_market ["prices" ].sel (
533- commodity = techs .commodity , year = agent .year
534- )
527+ prices = agent_market ["prices" ].sel (commodity = techs .commodity )
535528 demand = agent_market .consumption .sel (commodity = included )
536529 capacity = agent .filter_input (capacity_to_service_demand (demand , techs ))
537530 production = (
@@ -555,7 +548,7 @@ def sector_eac(sector: AbstractSector, market: xr.Dataset, **kwargs) -> pd.DataF
555548 data_agent ["agent" ] = agent .name
556549 data_agent ["category" ] = agent .category
557550 data_agent ["sector" ] = getattr (sector , "name" , "unnamed" )
558- data_agent ["year" ] = output_year
551+ data_agent ["year" ] = agent . year
559552 data_agent = multiindex_to_coords (data_agent , "timeslice" ).to_dataframe (
560553 "capital_costs"
561554 )
0 commit comments