Skip to content

Commit 2a1adc3

Browse files
committed
update
1 parent 94fd212 commit 2a1adc3

File tree

3 files changed

+5
-3
lines changed

3 files changed

+5
-3
lines changed

perf/vqe/Project.toml

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@ EinExprs = "b1794770-133b-4de1-afb4-526377e9f4c5"
77
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
88
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
99
Metis = "2679e427-3c69-5b7f-982b-ece356f1e94b"
10+
Muscle = "21fe5c4b-a943-414d-bf3e-516f24900631"
1011
Networks = "634dcf3f-6aa7-47ba-9e85-1fb329c9ebfe"
1112
PrettyTables = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
1213
Reactant = "3c362404-f566-11ee-1572-e11a4b42c853"
@@ -19,6 +20,7 @@ YaoBlocks = "418bc28f-b43b-5e0b-a6e7-61bbc1a2c1df"
1920
[compat]
2021
EinExprs = "0.6.10"
2122
Enzyme = "0.13.51"
23+
Muscle = "0.3.14"
2224
Reactant = "0.2.138"
23-
Tenet = "0.9.1"
25+
Tenet = "0.10.0"
2426
YaoBlocks = "0.13.15"

perf/vqe/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
A simple VQE training through exact tensor network contraction and backpropagation.
44
Because it uses exact tensor network contraction, it cannot scale to large number of layers but it should be able to scale to mid-range number of qubits (around 50) and shallow circuits.
55

6-
It uses a [Efficient SU(2)](https://) circuit ansatz for the VQE.
6+
It uses a "Efficient SU(2)" circuit ansatz for the VQE.
77

88
## Setup
99

perf/vqe/main.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@ results = Vector{Tuple{String,String,T,T,Float64}}()
107107

108108
# primal
109109
## only XLA
110-
f_xla = @compile compile_options = Reactant.DefaultXLACompileOptions(; sync=true) expectation(
110+
f_xla = @time @compile compile_options = Reactant.DefaultXLACompileOptions(; sync=true) expectation(
111111
params_re, observable_re, coef_re
112112
)
113113
b = @benchmark $f_xla($params_re, $observable_re, $coef_re) setup = (GC.gc(true))

0 commit comments

Comments
 (0)