Skip to content

Implement "hlo_call" with no arguments #1745

@avik-pal

Description

@avik-pal

We can call it some other name too instead of reusing hlo_call.

The idea is to give it an existing MLIR str and do the following:

Reactant.Ops.<hlo_call>(
    """
module @reactant_diagmm attributes {mhlo.num_partitions = 1 : i64, mhlo.num_replicas = 1 : i64} {
  func.func @main(%arg0: tensor<1024xf32> {enzymexla.memory_effects = []}, %arg1: tensor<32x1024xf32> {enzymexla.memory_effects = []}, %arg2: tensor<32x1024xf32> {enzymexla.memory_effects = []}) -> tensor<f32> attributes {enzymexla.memory_effects = []} {
    %cst = stablehlo.constant dense<0.000000e+00> : tensor<f32>
    %cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<1024x1024xf32>
    %0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<32x1024xf32>) -> tensor<1024x32xf32>
    %1 = stablehlo.iota dim = 0 : tensor<1024x2xi64>
    %2 = "stablehlo.scatter"(%cst_0, %1, %arg0) <{scatter_dimension_numbers = #stablehlo.scatter<inserted_window_dims = [0, 1], scatter_dims_to_operand_dims = [0, 1], index_vector_dim = 1>}> ({
    ^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>):
      stablehlo.return %arg4 : tensor<f32>
    }) : (tensor<1024x1024xf32>, tensor<1024x2xi64>, tensor<1024xf32>) -> tensor<1024x1024xf32>
    %3 = stablehlo.dot_general %2, %arg1, contracting_dims = [1] x [1], precision = [DEFAULT, DEFAULT] : (tensor<1024x1024xf32>, tensor<32x1024xf32>) -> tensor<1024x32xf32>
    %4 = stablehlo.add %3, %0 : tensor<1024x32xf32>
    %5 = stablehlo.reduce(%4 init: %cst) applies stablehlo.add across dimensions = [0, 1] : (tensor<1024x32xf32>, tensor<f32>) -> tensor<f32>
    return %5 : tensor<f32>
  }
}
"""
)

This roughly gets translated into

func.func @input_hlo(....) {
    ....
}

func.func @main() {
    %inp0 = stablehlo.constant ....
    %inp1 = stablehlo.constant ....
    %inp2 = stablehlo.constant ....
    // We need the opt barrier to prevent const folding
    %inp00, %inp10, %inp20 = stablehlo.optimization_barrier(%inp0, %inp1, %inp2)
    %res = func.call @input_hlo(%inp00, %inp10, %inp20)
    return %res
}

This would make it easier to test optimization passes on the input mlir more convenient than having to feed in the inputs manually

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions