-
Notifications
You must be signed in to change notification settings - Fork 71
Open
Description
Currently the fit method fails if you pass a pandas dataframe object to the fit() and predict() adding using the sklearn util check_array (http://scikit-learn.org/stable/modules/generated/sklearn.utils.check_array.html#sklearn.utils.check_array) will by default convert the pandas df to an at 2D numpy array which can then be used without code change from the user.
i.e
In the examples you load data as a data frame
genetic_data = pd.read_csv('https://github.com/EpistasisLab/scikit-rebate/raw/master/data/'
'GAMETES_Epistasis_2-Way_20atts_0.4H_EDM-1_1.tsv.gz',
sep='\t', compression='gzip')
#
# Now we convert to a numpy array
#
features, labels = genetic_data.drop('class', axis=1).values, genetic_data['class'].valuesThis would be as simple as changing (in fit() and 'predict()`)
self._X = check_array(X)
self._y = column_or_1d(y)Metadata
Metadata
Assignees
Labels
No labels