|
| 1 | +#!/usr/bin/python3 |
| 2 | +""" |
| 3 | +Script to generate the data required for SystemC testbench. |
| 4 | +""" |
| 5 | +from typing import Tuple |
| 6 | + |
| 7 | +import cv2 |
| 8 | +import numpy as np |
| 9 | +import matplotlib.pyplot as plt |
| 10 | + |
| 11 | + |
| 12 | +def apply_sobel_filter(image_path: str |
| 13 | + )-> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
| 14 | + """Applies the Sobel filter in X and Y to a input image and returns each |
| 15 | + step. |
| 16 | +
|
| 17 | + Args: |
| 18 | + image_path (str): Path to the input image |
| 19 | +
|
| 20 | + Returns: |
| 21 | + Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: A tuple |
| 22 | + containing the gray image, the sobel in x, the sobel in y, and the |
| 23 | + sobel combining x and y. |
| 24 | + """ |
| 25 | + # Read the image |
| 26 | + image: np.ndarray = cv2.imread(image_path) |
| 27 | + |
| 28 | + # BGR to grayscale |
| 29 | + gray_img: np.ndarray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
| 30 | + |
| 31 | + # Apply Sobel in x direction |
| 32 | + sobel_x_img: np.ndarray = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=3) |
| 33 | + sobel_x_uint8: np.ndarray = np.uint8(np.absolute(sobel_x_img)) |
| 34 | + |
| 35 | + # Apply Sobel in y direction |
| 36 | + sobel_y_img: np.ndarray = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=3) |
| 37 | + sobel_y_uint8: np.ndarray = np.uint8(np.absolute(sobel_y_img)) |
| 38 | + |
| 39 | + # Combine sobel |
| 40 | + sobel_combined_img: np.ndarray = cv2.magnitude(sobel_x_img, sobel_y_img) |
| 41 | + |
| 42 | + # Convert to 8-bit image |
| 43 | + sobel_combined_uint8: np.ndarray = np.uint8(np.absolute(sobel_combined_img)) |
| 44 | + |
| 45 | + # Display the results |
| 46 | + plt.figure(figsize=(10, 8)) |
| 47 | + |
| 48 | + plt.subplot(2, 2, 1) |
| 49 | + plt.title('Original Image') |
| 50 | + plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) |
| 51 | + plt.axis('off') |
| 52 | + |
| 53 | + plt.subplot(2, 2, 2) |
| 54 | + plt.title('Grayscale Image') |
| 55 | + plt.imshow(gray_img, cmap='gray') |
| 56 | + plt.axis('off') |
| 57 | + |
| 58 | + plt.subplot(2, 2, 3) |
| 59 | + plt.title('Sobel X') |
| 60 | + plt.imshow(np.uint8(np.absolute(sobel_x_img)), cmap='gray') |
| 61 | + plt.axis('off') |
| 62 | + |
| 63 | + plt.subplot(2, 2, 4) |
| 64 | + plt.title('Sobel Y') |
| 65 | + plt.imshow(np.uint8(np.absolute(sobel_y_img)), cmap='gray') |
| 66 | + plt.axis('off') |
| 67 | + |
| 68 | + plt.figure(figsize=(5, 5)) |
| 69 | + plt.title('Sobel Combined') |
| 70 | + plt.imshow(sobel_combined_uint8, cmap='gray') |
| 71 | + plt.axis('off') |
| 72 | + |
| 73 | + plt.show() |
| 74 | + |
| 75 | + return (gray_img, sobel_x_uint8, sobel_y_uint8, sobel_combined_uint8) |
| 76 | + |
| 77 | + |
| 78 | +if __name__ == '__main__': |
| 79 | + img_name: str = 'car' |
| 80 | + img_ext: str = 'jpg' |
| 81 | + img_path: str = f'src/imgs/{img_name}.{img_ext}' |
| 82 | + gray, sobel_x, sobel_y, sobel_combined = apply_sobel_filter(img_path) |
| 83 | + |
| 84 | + cv2.imwrite(f'src/imgs/{img_name}_grayscale_image.{img_ext}', gray) |
| 85 | + cv2.imwrite(f'src/imgs/{img_name}_sobel_x_result.{img_ext}', np.uint8(np.absolute(sobel_x))) |
| 86 | + cv2.imwrite(f'src/imgs/{img_name}_sobel_y_result.{img_ext}', np.uint8(np.absolute(sobel_y))) |
| 87 | + cv2.imwrite(f'src/imgs/{img_name}_sobel_combined_result.{img_ext}', sobel_combined) |
| 88 | + |
0 commit comments