|
29 | 29 | "* [Detecting and Categorizing Brick Kilns from Satellite Imagery](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/detecting_and_categorizing_brick_kilns_from_satellite_imagery.ipynb)\n",
|
30 | 30 | "* [Extracting Slums from Satellite Imagery](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/extracting_slums_from_satellite_imagery.ipynb)\n",
|
31 | 31 | "* [Extracting Sinkholes from Aerial Imagery](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/extracting_sinkholes_from_aerial_imagery_over_deadsea)\n",
|
32 |
| - "* [Climate Change Impacts on Trees in Delhi](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/climate_change_impacts_on_trees_in_delhi)\n", |
33 | 32 | "* [Detecting Settlements Using Supervised Classification and Deep Learning](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/detecting_settlements_using_landsat-8_imagery)\n",
|
| 33 | + "* [How much green is Delhi as on 15 Oct 2017?](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/how-much-green-is-Delhi-as-on-15-oct-2017) \n", |
34 | 34 | "* [Maximizing Fire Protection Coverage](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/site_maximizes_fire_protection_coverage)\n",
|
35 | 35 | "* [Calculate Impervious Surfaces from Multispectral Imagery using Deep Learning](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/calculate_impervious_surfaces_from_multispectral_imagery/)\n",
|
36 |
| - "* [Time Series Prediction of AirBnB Properties in New York City](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/time_series_prediction_airbnb_properties-nyc)" |
| 36 | + "* [Safe Streets to Schools](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/safe_streets_to_schools)\n", |
| 37 | + "* [Spatial and temporal distribution of service calls using big data tools](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls)\n", |
| 38 | + "* [Time Series Prediction of AirBnB Properties in New York City](https://developers.arcgis.com/python/samples/04_gis_analysts_data_scientists/analyzing_growth_factors_of_airbnb_properties_in_new_york_city)" |
37 | 39 | ]
|
38 | 40 | },
|
39 | 41 | {
|
40 | 42 | "cell_type": "markdown",
|
41 | 43 | "metadata": {},
|
42 | 44 | "source": [
|
43 |
| - "#### [`arcgis.raster.functios.gbl`](https://developers.arcgis.com/python/api-reference/arcgis.raster.functions.gbl.html#)" |
| 45 | + "#### [`arcgis.raster.functions.gbl`](https://developers.arcgis.com/python/api-reference/arcgis.raster.functions.gbl.html#)" |
44 | 46 | ]
|
45 | 47 | },
|
46 | 48 | {
|
|
78 | 80 | "source": [
|
79 | 81 | "* Adds the [`DeepLabV3`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#deeplab) model based on [`torchvision`](https://pytorch.org/docs/stable/torchvision/index.html)\n",
|
80 | 82 | " * includes multispectral data support\n",
|
81 |
| - "* Adds [`PointCNN`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#pointcnn) model to segment point clouds into classes\n", |
82 |
| - "* Adds support for multi-channel data augmentation for training on multispectral imagery\n", |
83 |
| - " * set `lighting_transforms` parameter in [`prepare_data()`]() to `True` or `False` to control data augmentation\n", |
| 83 | + "* Enhancements to Multispectral data support: \n", |
84 | 84 | " * turn on `DRA` with the `statistics_type` parameter in various `show_results()` and `show_batch()` functions\n",
|
85 | 85 | " * adds environment variable `type_init_tail_parameters` to control `Model Tail` initialization for `arcgis.learn` functions\n",
|
86 | 86 | "* Sanctions [`classify_objects()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#classify-objects) over [`FeatureClassifier.categorize_features()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#arcgis.learn.FeatureClassifier.categorize_features) for feature categorization\n",
|
87 | 87 | "* Adds support for training models on either cpu or gpu devices\n",
|
88 | 88 | "* Adds support for evaluating MaskRCNN model performance with correct metrics for the trained model to compare the results\n",
|
89 |
| - "* Enhances module to create pre-trained backbones on satellite imagery\n", |
90 |
| - " * use custom pretrained backbones \n", |
91 |
| - " * Esri World Imagery\n", |
92 |
| - " * landsat imagery\n", |
93 |
| - " * sentinel imagery\n", |
94 | 89 | "* Adds [`accuracy()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#arcgis.learn.UnetClassifier.accuracy) function to [`UnetClassifier`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#unetclassifier)\n",
|
95 | 90 | "* Adds `unet_aux_loss` parameter to the [`PSPNetClassifier`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#pspnetclassifier)\n",
|
96 | 91 | "* Adds support for training a subset of classes from [`prepare_data()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#prepare-data) `class_mapping` parameter to [`MaskRCNN`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#maskrcnn)\n",
|
|
177 | 172 | "* Improves messaging when incorrect path passed as `path` argument to [`prepare_data()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#prepare-data)\n",
|
178 | 173 | "* Fixes error when list of tensors is empty when running [`SingleShotDetector.fit()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#arcgis.learn.SingleShotDetector.fit) model\n",
|
179 | 174 | "* Fixes model accuracy function in [`Unet`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#unetclassifier) and [`PSPNet`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#pspnetclassifier) to return maximum accuracy if checkpoint is `True`\n",
|
180 |
| - "* Enhances [`SingleShotDetector`]() to support rotated bounding boxes as inputs\n", |
181 | 175 | "* Improves tagging scheme documentation for [`prepare_data()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#prepare-data) function\n",
|
182 | 176 | "* Improves visual accuracy when using Multispectral imagery with [`UNetClassifier`](https://developers.arcgis.com/python/api-reference/arcgis.learn.html#unetclassifier)\n",
|
183 | 177 | "* Fixes missing `supported_backbone` documentation for all models\n",
|
|
0 commit comments