Skip to content

Commit 72df91c

Browse files
committed
Changes to metadata
Changes to metadata
1 parent 88e1437 commit 72df91c

File tree

1 file changed

+67
-40
lines changed

1 file changed

+67
-40
lines changed

items_metadata.yaml

Lines changed: 67 additions & 40 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
11
samples:
2-
# - title: Analyzing New York City taxi data using big data tools
3-
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=27017ef3b3864e74ae1b7587719a3391
4-
# path: ./samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
5-
# thumbnail: ./static/thumbnails/analyze_new_york_city_taxi_data.png
6-
# snippet: Use big data tools to analye NYC taxi data
7-
# description: This sample demonstrates the steps involved in performing an aggregation analysis on New York city taxi point data using ArcGIS API for Python.
8-
# licenseInfo: ""
9-
# tags: ["Data Science", "GIS", "Taxi"]
2+
- title: Analyzing New York City taxi data using big data tools
3+
url: https://geosaurus.maps.arcgis.com/home/item.html?id=27017ef3b3864e74ae1b7587719a3391
4+
path: ./samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
5+
thumbnail: ./static/thumbnails/analyze_new_york_city_taxi_data.png
6+
snippet: Use big data tools to analye NYC taxi data
7+
description: This sample demonstrates the steps involved in performing an aggregation analysis on New York city taxi point data using ArcGIS API for Python.
8+
licenseInfo: ""
9+
tags: ["Data Science", "GIS", "Taxi"]
1010
- title: Data Visualization - Construction permits, part 1/2
1111
url: https://www.arcgis.com/home/item.html?id=467bc6806c9e40dc8222744e0937b80c
1212
path: ./samples/04_gis_analysts_data_scientists/analyze_patterns_in_construction_permits_part1.ipynb
@@ -162,14 +162,14 @@ samples:
162162
# description: This notebook provides you with tools and methods that you can try yourself in performing data modeling, analyzing, and predicting the spread of COVID-19 with the ArcGIS API for Python, and other libraries such as pandas and numpy
163163
# licenseInfo: ""
164164
# tags: ["Data Science", "GIS", "Predictive", "Covid19", "Part 3"]
165-
# - title: Creating hurricane tracks using Geoanalytics
166-
# url: https://www.arcgis.com/home/item.html?id=c6106b0ead3f49059b326646eda85f9a
167-
# path: ./samples/04_gis_analysts_data_scientists/creating_hurricane_tracks_using_geoanalytics.ipynb
168-
# thumbnail: ./static/thumbnails/creating_hurricane_tracks_using_geoanalytics.png
169-
# snippet: Use GeoAnalytics to create hurricane tracks
170-
# description: The sample code below uses big data analytics (GeoAnalytics) to reconstruct hurricane tracks using data registered on a big data file share in the GIS
171-
# licenseInfo: ""
172-
# tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics"]
165+
- title: Creating hurricane tracks using Geoanalytics
166+
url: https://www.arcgis.com/home/item.html?id=c6106b0ead3f49059b326646eda85f9a
167+
path: ./samples/04_gis_analysts_data_scientists/creating_hurricane_tracks_using_geoanalytics.ipynb
168+
thumbnail: ./static/thumbnails/creating_hurricane_tracks_using_geoanalytics.png
169+
snippet: Use GeoAnalytics to create hurricane tracks
170+
description: The sample code below uses big data analytics (GeoAnalytics) to reconstruct hurricane tracks using data registered on a big data file share in the GIS
171+
licenseInfo: ""
172+
tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics"]
173173
# - title: Creating Raster Information Product using Raster Analytics
174174
# url: https://www.arcgis.com/home/item.html?id=f0423a7df2064096a78e150a6fbf5ae4
175175
# path: ./samples/04_gis_analysts_data_scientists/creating_raster_information_product_using_raster_analytics.ipynb
@@ -178,14 +178,14 @@ samples:
178178
# description: This sample show the capabilities of imagery layers and raster analytics.
179179
# licenseInfo: ""
180180
# tags: ["Data Science", "GIS", "Raster Analytics", "Product"]
181-
# - title: Crime analysis and clustering using geoanalytics and pyspark.ml
182-
# url: https://www.arcgis.com/home/item.html?id=1410a28d3a8d4d2aa353efcf9b606b69
183-
# path: ./samples/04_gis_analysts_data_scientists/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.ipynb
184-
# thumbnail: ./static/thumbnails/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.png
185-
# snippet: Analyze crime in Chicago
186-
# description: Through this sample, we will demonstrate the utility of a number of geoanalytics tools including find_hot_spots, aggregate_points and calculate_density to visually understand geographical patterns.
187-
# licenseInfo: ""
188-
# tags: ["Data Science", "GIS", "Crime", "Clustering", "GeoAnalytics", "PySpark"]
181+
- title: Crime analysis and clustering using geoanalytics and pyspark.ml
182+
url: https://www.arcgis.com/home/item.html?id=1410a28d3a8d4d2aa353efcf9b606b69
183+
path: ./samples/04_gis_analysts_data_scientists/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.ipynb
184+
thumbnail: ./static/thumbnails/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.png
185+
snippet: Analyze crime in Chicago
186+
description: Through this sample, we will demonstrate the utility of a number of geoanalytics tools including find_hot_spots, aggregate_points and calculate_density to visually understand geographical patterns.
187+
licenseInfo: ""
188+
tags: ["Data Science", "GIS", "Crime", "Clustering", "GeoAnalytics", "PySpark"]
189189
- title: Designate Bike Routes for Commuting Professionals
190190
url: https://www.arcgis.com/home/item.html?id=62b874f4e705448a95abac0240f3053d
191191
path: ./samples/04_gis_analysts_data_scientists/designate_bike_routes_for_commuting_professionals.ipynb
@@ -404,14 +404,14 @@ samples:
404404
# description: In this notebook you will analyze the aggregated tracks to answer important questions about hurricane severity and how they correlate over time.
405405
# licenseInfo: ""
406406
# tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics", "Part 3"]
407-
# - title: Predict Floods with Unit Hydrographs
408-
# url: https://www.arcgis.com/home/item.html?id=2bbf431943304ddeba48d00d14f8c34f
409-
# path: ./samples/04_gis_analysts_data_scientists/predict-floods-with-unit-hydrographs.ipynb
410-
# thumbnail: ./static/thumbnails/predict-floods-with-unit-hydrographs.png
411-
# snippet: Estimate stream runoff during a predicted rainstorm in Vermont.
412-
# description: Estimate stream runoff during a predicted rainstorm in Vermont.
413-
# licenseInfo: ""
414-
# tags: ["Data Science", "GIS", "Raster", "Floods", "Prediction", "Hydrograph"]
407+
- title: Predict Floods with Unit Hydrographs
408+
url: https://www.arcgis.com/home/item.html?id=2bbf431943304ddeba48d00d14f8c34f
409+
path: ./samples/04_gis_analysts_data_scientists/predict-floods-with-unit-hydrographs.ipynb
410+
thumbnail: ./static/thumbnails/predict-floods-with-unit-hydrographs.png
411+
snippet: Estimate stream runoff during a predicted rainstorm in Vermont.
412+
description: Estimate stream runoff during a predicted rainstorm in Vermont.
413+
licenseInfo: ""
414+
tags: ["Data Science", "GIS", "Raster", "Floods", "Prediction", "Hydrograph"]
415415
# - title: Predicting El Niño–Southern Oscillation through correlation and time series analysis/deep learning
416416
# url: https://www.arcgis.com/home/item.html?id=69df9348e964433d86a5c0fb8aaa48de
417417
# path: ./samples/04_gis_analysts_data_scientists/predicting_enso.ipynb
@@ -453,14 +453,14 @@ samples:
453453
description: Weighted Linear Combination (WLC) method based on combined GIS and Remote Sensing techniques is used in the sample to create a potential hazard map for avalanches.
454454
licenseInfo: ""
455455
tags: ["Data Science", "GIS", "Avalanche", "Mapping"]
456-
# - title: Spatial and temporal distribution of service calls using big data tools
457-
# url: https://www.arcgis.com/home/item.html?id=7b6991aa6f4d4ce0be6e43badb04d117
458-
# path: ./samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls.ipynb
459-
# thumbnail: ./static/thumbnails/spatial_and_temporal_trends_of_service_calls.png
460-
# snippet: Use big data tools for spatial and temporal distribution
461-
# description: This sample demonstrates ability of ArcGIS API for Python to perform big data analysis on your infrastructure.
462-
# licenseInfo: ""
463-
# tags: ["Data Science", "GIS", "Service Calls", "GeoAnalytics", "Trends", "Spatial", "Temporal"]
456+
- title: Spatial and temporal distribution of service calls using big data tools
457+
url: https://www.arcgis.com/home/item.html?id=7b6991aa6f4d4ce0be6e43badb04d117
458+
path: ./samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls.ipynb
459+
thumbnail: ./static/thumbnails/spatial_and_temporal_trends_of_service_calls.png
460+
snippet: Use big data tools for spatial and temporal distribution
461+
description: This sample demonstrates ability of ArcGIS API for Python to perform big data analysis on your infrastructure.
462+
licenseInfo: ""
463+
tags: ["Data Science", "GIS", "Service Calls", "GeoAnalytics", "Trends", "Spatial", "Temporal"]
464464
- title: Temperature forecast using time series data
465465
url: https://www.arcgis.com/home/item.html?id=cf173caaba3f495f9592a9f180361ee4
466466
path: ./samples/04_gis_analysts_data_scientists/temperature_forecast_using_time_series_data.ipynb
@@ -789,6 +789,33 @@ samples:
789789
licenseInfo: ""
790790
runtime: advanced_gpu
791791
tags: ["Data Science", "GIS", "Stream Extraction", "Deep Learning"]
792+
# - title: Supervised learning of tabular data using AutoML
793+
# url: https://www.arcgis.com/home/item.html?id=06486550d1e148e298a9d572cfedcf5e
794+
# path: ./samples/04_gis_analysts_data_scientists/tabular_data_supervised_learning_using_automl.ipynb
795+
# thumbnail: ./static/thumbnails/default.png
796+
# snippet: arcgis.learn users will now be able to use AutoML for supervised learning classification or regression problems involving tabular data.
797+
# description: arcgis.learn users will now be able to use AutoML for supervised learning classification or regression problems involving tabular data.
798+
# licenseInfo: ""
799+
# runtime: advanced
800+
# tags: ["Data Science", "GIS", "Supervised Learning", "Tabular Data"]
801+
# - title: Model explainability for ML Models
802+
# url: https://www.arcgis.com/home/item.html?id=3eaade48a6204a08861b9cfb2497be83
803+
# path: ./samples/04_gis_analysts_data_scientists/model_explainability_using_shap_for_tabular_data.ipynb
804+
# thumbnail: ./static/thumbnails/default.png
805+
# snippet: arcgis.learn has now added explainability feature to all of its models that work with tabular data. This includes all the MLModels and the fully connected networks.
806+
# description: arcgis.learn has now added explainability feature to all of its models that work with tabular data. This includes all the MLModels and the fully connected networks.
807+
# licenseInfo: ""
808+
# runtime: advanced
809+
# tags: ["Data Science", "GIS", "Supervised Learning", "Tabular Data"]
810+
# - title: Determining site suitability for oil palm plantation
811+
# url: https://www.arcgis.com/home/item.html?id=47d07342d1204449bb661d6cb12d0368
812+
# path: ./samples/04_gis_analysts_data_scientists/determining_site_suitability_for_oil_palm_plantation.ipynb
813+
# thumbnail: ./static/thumbnails/default.png
814+
# snippet: In this notebook, we determine the site suitability for oil palm development.
815+
# description: In this notebook, we determine the site suitability for oil palm development.
816+
# licenseInfo: ""
817+
# runtime: advanced
818+
# tags: ["Data Science", "GIS", "Site Suitability", "Raster Analysis"]
792819
guides: []
793820
labs:
794821
- title: Create Data

0 commit comments

Comments
 (0)