|
20 | 20 | "source": [
|
21 | 21 | "### [`Guides`](https://developers.arcgis.com/python/guide/)\n",
|
22 | 22 | "* [Deep Learning with ArcGIS](https://developers.arcgis.com/python/guide/)\n",
|
23 |
| - " * [Utilize Multipe GPUs to Train Model](https://developers.arcgis.com/python/guide/utilize-multiple-gpus-to-train-model)" |
| 23 | + " * [Utilize Multipe GPUs to Train Model](https://developers.arcgis.com/python/guide/utilize-multiple-gpus-to-train-model)\n", |
| 24 | + " * [Deep learning on time series data](https://developers.arcgis.com/python/guide/dl-on-time-series-data)" |
24 | 25 | ]
|
25 | 26 | },
|
26 | 27 | {
|
|
29 | 30 | "source": [
|
30 | 31 | "### [`Samples`](https://developers.arcgis.com/python/sample-notebooks/)\n",
|
31 | 32 | "* [GIS Analysts and Data Scientists](https://developers.arcgis.com/python/sample-notebooks/)\n",
|
32 |
| - " * [Streams extraction using ConnectNet ](https://developers.arcgis.com/python/sample-notebooks/streams-extraction-using-connectnet)" |
| 33 | + " * [Streams extraction using ConnectNet ](https://developers.arcgis.com/python/sample-notebooks/streams-extraction-using-connectnet)\n", |
| 34 | + " * [Streams extraction using Multi-Task Road Extractor](https://developers.arcgis.com/python/sample-notebooks/streams-extraction-using-multi-task-road-extractor)\n", |
| 35 | + " * [Forecasting monthly rainfall in California using Deep Learning Time Series techniques](https://developers.arcgis.com/python/sample-notebooks/forecasting-monthly-rainfall-in-california-using-deeplearning-timeseries-model-from-arcgis-learn)\n", |
| 36 | + " * [Landcover mapping using hyperspectral imagery and deep learning](https://developers.arcgis.com/python/sample-notebooks/landcover-classification-using-hyperspectral-imagery-and-deep-learning)" |
33 | 37 | ]
|
34 | 38 | },
|
35 | 39 | {
|
|
148 | 152 | "* [GIS Analysts and Data Scientists](https://developers.arcgis.com/python/sample-notebooks/)\n",
|
149 | 153 | " * Updates for `Try it live` Site:\n",
|
150 | 154 | " * [Automate Road Surface Investigation Using Deep Learning](https://developers.arcgis.com/python/sample-notebooks/automate-road-surface-investigation-using-deep-learning/)\n",
|
151 |
| - " * [Reconstructing 3D buildings from Aerial LiDAR with Deep Learning](https://developers.arcgis.com/python/sample-notebooks/building-reconstruction-using-mask-rcnn/)" |
| 155 | + " * [Reconstructing 3D buildings from Aerial LiDAR with Deep Learning](https://developers.arcgis.com/python/sample-notebooks/building-reconstruction-using-mask-rcnn/)\n", |
| 156 | + " * [Finding a New Home](https://developers.arcgis.com/python/sample-notebooks/finding-a-new-home/)\n", |
| 157 | + " * [Automate Building Footprint Extraction using Deep learning](https://developers.arcgis.com/python/sample-notebooks/automate-building-footprint-extraction-using-instance-segmentation/)\n", |
| 158 | + " * [Analyzing growth factors of rental properties in New York City](https://developers.arcgis.com/python/sample-notebooks/analyzing-growth-factors-of-airbnb-properties-in-new-york-city/)" |
152 | 159 | ]
|
153 | 160 | },
|
154 | 161 | {
|
|
206 | 213 | " * Fixes `fit()` method in segmentation models returning `NaN` values for certain attributes: [`UNetClassifier`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html#unetclassifier), [`PSPNetClassifier`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html#pspnetclassifier), [`DeepLab`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html#deeplab)\n",
|
207 | 214 | " * [`MultiTaskRoadExtractor`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#multitaskroadextractor) \n",
|
208 | 215 | " * Fixes issue for [`show_results()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.show_results) plotting images incorrectly\n",
|
209 |
| - " * Fixes issue causing [`save()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.save) only to work after calling [`fit()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.save)\n", |
| 216 | + " * Fixes issue causing [`save()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.save) only to work after calling [`fit()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.fit)\n", |
210 | 217 | " * Fixes [`load()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.load) so it only needs the model name\n",
|
| 218 | + " * Fixes errors with [`fit()`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html?highlight=retinanet#arcgis.learn.MultiTaskRoadExtractor.fit) when using monitor functionality\n", |
211 | 219 | "* [`Unstructured Text Models`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html#unstructured-text-models)\n",
|
212 | 220 | " * [`arcgis.learn.text`](https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html#arcgis-learn-text-module) module\n",
|
213 | 221 | " * Adds capability to use `HuggingFace` [pretrained models](https://huggingface.co/transformers/pretrained_models.html) for:\n",
|
|
0 commit comments