Skip to content

Commit 86e3a53

Browse files
author
Atma Mani
authored
Merge pull request #1048 from mohi9282/v190_changes
Changes to metadata
2 parents 88e1437 + 5d21ac4 commit 86e3a53

31 files changed

+108
-82
lines changed

items_metadata.yaml

Lines changed: 70 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
11
samples:
2-
# - title: Analyzing New York City taxi data using big data tools
3-
# url: https://geosaurus.maps.arcgis.com/home/item.html?id=27017ef3b3864e74ae1b7587719a3391
4-
# path: ./samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
5-
# thumbnail: ./static/thumbnails/analyze_new_york_city_taxi_data.png
6-
# snippet: Use big data tools to analye NYC taxi data
7-
# description: This sample demonstrates the steps involved in performing an aggregation analysis on New York city taxi point data using ArcGIS API for Python.
8-
# licenseInfo: ""
9-
# tags: ["Data Science", "GIS", "Taxi"]
2+
- title: Analyzing New York City taxi data using big data tools
3+
url: https://www.arcgis.com/home/item.html?id=27017ef3b3864e74ae1b7587719a3391
4+
path: ./samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
5+
thumbnail: ./static/thumbnails/analyze_new_york_city_taxi_data.png
6+
snippet: Use big data tools to analye NYC taxi data
7+
description: This sample demonstrates the steps involved in performing an aggregation analysis on New York city taxi point data using ArcGIS API for Python.
8+
licenseInfo: ""
9+
tags: ["Data Science", "GIS", "Taxi"]
1010
- title: Data Visualization - Construction permits, part 1/2
1111
url: https://www.arcgis.com/home/item.html?id=467bc6806c9e40dc8222744e0937b80c
1212
path: ./samples/04_gis_analysts_data_scientists/analyze_patterns_in_construction_permits_part1.ipynb
@@ -162,14 +162,14 @@ samples:
162162
# description: This notebook provides you with tools and methods that you can try yourself in performing data modeling, analyzing, and predicting the spread of COVID-19 with the ArcGIS API for Python, and other libraries such as pandas and numpy
163163
# licenseInfo: ""
164164
# tags: ["Data Science", "GIS", "Predictive", "Covid19", "Part 3"]
165-
# - title: Creating hurricane tracks using Geoanalytics
166-
# url: https://www.arcgis.com/home/item.html?id=c6106b0ead3f49059b326646eda85f9a
167-
# path: ./samples/04_gis_analysts_data_scientists/creating_hurricane_tracks_using_geoanalytics.ipynb
168-
# thumbnail: ./static/thumbnails/creating_hurricane_tracks_using_geoanalytics.png
169-
# snippet: Use GeoAnalytics to create hurricane tracks
170-
# description: The sample code below uses big data analytics (GeoAnalytics) to reconstruct hurricane tracks using data registered on a big data file share in the GIS
171-
# licenseInfo: ""
172-
# tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics"]
165+
- title: Creating hurricane tracks using Geoanalytics
166+
url: https://www.arcgis.com/home/item.html?id=c6106b0ead3f49059b326646eda85f9a
167+
path: ./samples/04_gis_analysts_data_scientists/creating_hurricane_tracks_using_geoanalytics.ipynb
168+
thumbnail: ./static/thumbnails/creating_hurricane_tracks_using_geoanalytics.png
169+
snippet: Use GeoAnalytics to create hurricane tracks
170+
description: The sample code below uses big data analytics (GeoAnalytics) to reconstruct hurricane tracks using data registered on a big data file share in the GIS
171+
licenseInfo: ""
172+
tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics"]
173173
# - title: Creating Raster Information Product using Raster Analytics
174174
# url: https://www.arcgis.com/home/item.html?id=f0423a7df2064096a78e150a6fbf5ae4
175175
# path: ./samples/04_gis_analysts_data_scientists/creating_raster_information_product_using_raster_analytics.ipynb
@@ -178,14 +178,14 @@ samples:
178178
# description: This sample show the capabilities of imagery layers and raster analytics.
179179
# licenseInfo: ""
180180
# tags: ["Data Science", "GIS", "Raster Analytics", "Product"]
181-
# - title: Crime analysis and clustering using geoanalytics and pyspark.ml
182-
# url: https://www.arcgis.com/home/item.html?id=1410a28d3a8d4d2aa353efcf9b606b69
183-
# path: ./samples/04_gis_analysts_data_scientists/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.ipynb
184-
# thumbnail: ./static/thumbnails/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.png
185-
# snippet: Analyze crime in Chicago
186-
# description: Through this sample, we will demonstrate the utility of a number of geoanalytics tools including find_hot_spots, aggregate_points and calculate_density to visually understand geographical patterns.
187-
# licenseInfo: ""
188-
# tags: ["Data Science", "GIS", "Crime", "Clustering", "GeoAnalytics", "PySpark"]
181+
- title: Crime analysis and clustering using geoanalytics and pyspark.ml
182+
url: https://www.arcgis.com/home/item.html?id=1410a28d3a8d4d2aa353efcf9b606b69
183+
path: ./samples/04_gis_analysts_data_scientists/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.ipynb
184+
thumbnail: ./static/thumbnails/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.png
185+
snippet: Analyze crime in Chicago
186+
description: Through this sample, we will demonstrate the utility of a number of geoanalytics tools including find_hot_spots, aggregate_points and calculate_density to visually understand geographical patterns.
187+
licenseInfo: ""
188+
tags: ["Data Science", "GIS", "Crime", "Clustering", "GeoAnalytics", "PySpark"]
189189
- title: Designate Bike Routes for Commuting Professionals
190190
url: https://www.arcgis.com/home/item.html?id=62b874f4e705448a95abac0240f3053d
191191
path: ./samples/04_gis_analysts_data_scientists/designate_bike_routes_for_commuting_professionals.ipynb
@@ -404,14 +404,14 @@ samples:
404404
# description: In this notebook you will analyze the aggregated tracks to answer important questions about hurricane severity and how they correlate over time.
405405
# licenseInfo: ""
406406
# tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics", "Part 3"]
407-
# - title: Predict Floods with Unit Hydrographs
408-
# url: https://www.arcgis.com/home/item.html?id=2bbf431943304ddeba48d00d14f8c34f
409-
# path: ./samples/04_gis_analysts_data_scientists/predict-floods-with-unit-hydrographs.ipynb
410-
# thumbnail: ./static/thumbnails/predict-floods-with-unit-hydrographs.png
411-
# snippet: Estimate stream runoff during a predicted rainstorm in Vermont.
412-
# description: Estimate stream runoff during a predicted rainstorm in Vermont.
413-
# licenseInfo: ""
414-
# tags: ["Data Science", "GIS", "Raster", "Floods", "Prediction", "Hydrograph"]
407+
- title: Predict Floods with Unit Hydrographs
408+
url: https://www.arcgis.com/home/item.html?id=2bbf431943304ddeba48d00d14f8c34f
409+
path: ./samples/04_gis_analysts_data_scientists/predict-floods-with-unit-hydrographs.ipynb
410+
thumbnail: ./static/thumbnails/predict-floods-with-unit-hydrographs.png
411+
snippet: Estimate stream runoff during a predicted rainstorm in Vermont.
412+
description: Estimate stream runoff during a predicted rainstorm in Vermont.
413+
licenseInfo: ""
414+
tags: ["Data Science", "GIS", "Raster", "Floods", "Prediction", "Hydrograph"]
415415
# - title: Predicting El Niño–Southern Oscillation through correlation and time series analysis/deep learning
416416
# url: https://www.arcgis.com/home/item.html?id=69df9348e964433d86a5c0fb8aaa48de
417417
# path: ./samples/04_gis_analysts_data_scientists/predicting_enso.ipynb
@@ -453,14 +453,14 @@ samples:
453453
description: Weighted Linear Combination (WLC) method based on combined GIS and Remote Sensing techniques is used in the sample to create a potential hazard map for avalanches.
454454
licenseInfo: ""
455455
tags: ["Data Science", "GIS", "Avalanche", "Mapping"]
456-
# - title: Spatial and temporal distribution of service calls using big data tools
457-
# url: https://www.arcgis.com/home/item.html?id=7b6991aa6f4d4ce0be6e43badb04d117
458-
# path: ./samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls.ipynb
459-
# thumbnail: ./static/thumbnails/spatial_and_temporal_trends_of_service_calls.png
460-
# snippet: Use big data tools for spatial and temporal distribution
461-
# description: This sample demonstrates ability of ArcGIS API for Python to perform big data analysis on your infrastructure.
462-
# licenseInfo: ""
463-
# tags: ["Data Science", "GIS", "Service Calls", "GeoAnalytics", "Trends", "Spatial", "Temporal"]
456+
- title: Spatial and temporal distribution of service calls using big data tools
457+
url: https://www.arcgis.com/home/item.html?id=7b6991aa6f4d4ce0be6e43badb04d117
458+
path: ./samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls.ipynb
459+
thumbnail: ./static/thumbnails/spatial_and_temporal_trends_of_service_calls.png
460+
snippet: Use big data tools for spatial and temporal distribution
461+
description: This sample demonstrates ability of ArcGIS API for Python to perform big data analysis on your infrastructure.
462+
licenseInfo: ""
463+
tags: ["Data Science", "GIS", "Service Calls", "GeoAnalytics", "Trends", "Spatial", "Temporal"]
464464
- title: Temperature forecast using time series data
465465
url: https://www.arcgis.com/home/item.html?id=cf173caaba3f495f9592a9f180361ee4
466466
path: ./samples/04_gis_analysts_data_scientists/temperature_forecast_using_time_series_data.ipynb
@@ -640,15 +640,15 @@ samples:
640640
# licenseInfo: ''
641641
# tags: ['Data Science', 'GIS', "Maps", "Web Scenes", "Publish"]
642642
- title: Building a change detection app using Jupyter Dashboard
643-
url: https://geosaurus.maps.arcgis.com/home/item.html?id=e3a0e48329cf4213a15574dd4b6b7694
643+
url: https://www.arcgis.com/home/item.html?id=e3a0e48329cf4213a15574dd4b6b7694
644644
path: ./samples/02_power_users_developers/building_a_change_detection_app_using_jupyter_dashboard.ipynb
645645
thumbnail: ./static/thumbnails/jupyter_dashboard_change.png
646646
snippet: Create an interactive jupyter dashboard
647647
description: This sample illustrates an interactive Jupyter dashboard web app which can be used to detect the changes in vegetation between the two dates.
648648
licenseInfo: ''
649649
tags: ['Jupyter', 'Dashboard', "Vegetation", "raster"]
650650
- title: Identifying country names from incomplete house addresses
651-
url: https://www.arcgis.com/home/item.html?id=55ec14f803774022862bcbda96653a0e
651+
url: https://www.arcgis.com/home/item.html?id=d52e28b3cd854c7fa92157f5cc46ca2c
652652
path: ./samples/04_gis_analysts_data_scientists/identifying-country-names-from-incomplete-house-addresses.ipynb
653653
thumbnail: ./static/thumbnails/identifying_country_names_from_incomplete_house_addresses.jpg
654654
snippet: Build a classifier to predict the country for incomplete house addresses.
@@ -745,7 +745,7 @@ samples:
745745
# runtime: advanced_gpu
746746
# tags: ["Data Science", "GIS", "Coastline Extraction", "Imagery"]
747747
- title: Translating Story Map from one language to another using Deep Learning
748-
url: https://www.arcgis.com/home/item.html?id=15a731751bad43c7abf7258b7aa90bac
748+
url: https://www.arcgis.com/home/item.html?id=747174e3770940369ee9b14499ae5014
749749
path: ./samples/04_gis_analysts_data_scientists/translating_story_map_from_one_language_to_another.ipynb
750750
thumbnail: ./static/thumbnails/default.png
751751
snippet: In this notebook, we will pick a story map written in English language, and create another story map with the text translated to Spanish language using the arcgis.learn.text's TextTranslator class.
@@ -789,6 +789,33 @@ samples:
789789
licenseInfo: ""
790790
runtime: advanced_gpu
791791
tags: ["Data Science", "GIS", "Stream Extraction", "Deep Learning"]
792+
# - title: Supervised learning of tabular data using AutoML
793+
# url: https://www.arcgis.com/home/item.html?id=06486550d1e148e298a9d572cfedcf5e
794+
# path: ./samples/04_gis_analysts_data_scientists/tabular_data_supervised_learning_using_automl.ipynb
795+
# thumbnail: ./static/thumbnails/default.png
796+
# snippet: arcgis.learn users will now be able to use AutoML for supervised learning classification or regression problems involving tabular data.
797+
# description: arcgis.learn users will now be able to use AutoML for supervised learning classification or regression problems involving tabular data.
798+
# licenseInfo: ""
799+
# runtime: advanced
800+
# tags: ["Data Science", "GIS", "Supervised Learning", "Tabular Data"]
801+
# - title: Model explainability for ML Models
802+
# url: https://www.arcgis.com/home/item.html?id=3eaade48a6204a08861b9cfb2497be83
803+
# path: ./samples/04_gis_analysts_data_scientists/model_explainability_using_shap_for_tabular_data.ipynb
804+
# thumbnail: ./static/thumbnails/default.png
805+
# snippet: arcgis.learn has now added explainability feature to all of its models that work with tabular data. This includes all the MLModels and the fully connected networks.
806+
# description: arcgis.learn has now added explainability feature to all of its models that work with tabular data. This includes all the MLModels and the fully connected networks.
807+
# licenseInfo: ""
808+
# runtime: advanced
809+
# tags: ["Data Science", "GIS", "Supervised Learning", "Tabular Data"]
810+
# - title: Determining site suitability for oil palm plantation
811+
# url: https://www.arcgis.com/home/item.html?id=47d07342d1204449bb661d6cb12d0368
812+
# path: ./samples/04_gis_analysts_data_scientists/determining_site_suitability_for_oil_palm_plantation.ipynb
813+
# thumbnail: ./static/thumbnails/default.png
814+
# snippet: In this notebook, we determine the site suitability for oil palm development.
815+
# description: In this notebook, we determine the site suitability for oil palm development.
816+
# licenseInfo: ""
817+
# runtime: advanced
818+
# tags: ["Data Science", "GIS", "Site Suitability", "Raster Analysis"]
792819
guides: []
793820
labs:
794821
- title: Create Data

labs/create_data.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -236,7 +236,7 @@
236236
"anaconda-cloud": {},
237237
"esriNotebookRuntime": {
238238
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
239-
"notebookRuntimeVersion": "4.0"
239+
"notebookRuntimeVersion": "5.0"
240240
},
241241
"kernelspec": {
242242
"display_name": "Python 3",

labs/display_web_map.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@
8787
"anaconda-cloud": {},
8888
"esriNotebookRuntime": {
8989
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
90-
"notebookRuntimeVersion": "4.0"
90+
"notebookRuntimeVersion": "5.0"
9191
},
9292
"kernelspec": {
9393
"display_name": "Python 3",

labs/display_web_scene.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -192,7 +192,7 @@
192192
"anaconda-cloud": {},
193193
"esriNotebookRuntime": {
194194
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
195-
"notebookRuntimeVersion": "4.0"
195+
"notebookRuntimeVersion": "5.0"
196196
},
197197
"kernelspec": {
198198
"display_name": "Python 3",

labs/download_data.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@
144144
"anaconda-cloud": {},
145145
"esriNotebookRuntime": {
146146
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
147-
"notebookRuntimeVersion": "4.0"
147+
"notebookRuntimeVersion": "5.0"
148148
},
149149
"kernelspec": {
150150
"display_name": "Python 3",

labs/find_places.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -253,7 +253,7 @@
253253
"metadata": {
254254
"esriNotebookRuntime": {
255255
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
256-
"notebookRuntimeVersion": "4.0"
256+
"notebookRuntimeVersion": "5.0"
257257
},
258258
"kernelspec": {
259259
"display_name": "Python 3",

labs/import_data.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -205,7 +205,7 @@
205205
"anaconda-cloud": {},
206206
"esriNotebookRuntime": {
207207
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
208-
"notebookRuntimeVersion": "4.0"
208+
"notebookRuntimeVersion": "5.0"
209209
},
210210
"kernelspec": {
211211
"display_name": "Python 3",

labs/load_item_by_id.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@
134134
"metadata": {
135135
"esriNotebookRuntime": {
136136
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
137-
"notebookRuntimeVersion": "4.0"
137+
"notebookRuntimeVersion": "5.0"
138138
},
139139
"kernelspec": {
140140
"display_name": "Python 3",

labs/load_spatial_data_frame.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -349,7 +349,7 @@
349349
"metadata": {
350350
"esriNotebookRuntime": {
351351
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
352-
"notebookRuntimeVersion": "4.0"
352+
"notebookRuntimeVersion": "5.0"
353353
},
354354
"kernelspec": {
355355
"display_name": "Python 3",

labs/search_and_geocode.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -193,7 +193,7 @@
193193
"metadata": {
194194
"esriNotebookRuntime": {
195195
"notebookRuntimeName": "ArcGIS Notebook Python 3 Standard",
196-
"notebookRuntimeVersion": "4.0"
196+
"notebookRuntimeVersion": "5.0"
197197
},
198198
"kernelspec": {
199199
"display_name": "Python 3",

0 commit comments

Comments
 (0)