1
1
samples :
2
- # - title: Analyzing New York City taxi data using big data tools
3
- # url: https://geosaurus.maps .arcgis.com/home/item.html?id=27017ef3b3864e74ae1b7587719a3391
4
- # path: ./samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
5
- # thumbnail: ./static/thumbnails/analyze_new_york_city_taxi_data.png
6
- # snippet: Use big data tools to analye NYC taxi data
7
- # description: This sample demonstrates the steps involved in performing an aggregation analysis on New York city taxi point data using ArcGIS API for Python.
8
- # licenseInfo: ""
9
- # tags: ["Data Science", "GIS", "Taxi"]
2
+ - title : Analyzing New York City taxi data using big data tools
3
+ url : https://www .arcgis.com/home/item.html?id=27017ef3b3864e74ae1b7587719a3391
4
+ path : ./samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
5
+ thumbnail : ./static/thumbnails/analyze_new_york_city_taxi_data.png
6
+ snippet : Use big data tools to analye NYC taxi data
7
+ description : This sample demonstrates the steps involved in performing an aggregation analysis on New York city taxi point data using ArcGIS API for Python.
8
+ licenseInfo : " "
9
+ tags : ["Data Science", "GIS", "Taxi"]
10
10
- title : Data Visualization - Construction permits, part 1/2
11
11
url : https://www.arcgis.com/home/item.html?id=467bc6806c9e40dc8222744e0937b80c
12
12
path : ./samples/04_gis_analysts_data_scientists/analyze_patterns_in_construction_permits_part1.ipynb
@@ -162,14 +162,14 @@ samples:
162
162
# description: This notebook provides you with tools and methods that you can try yourself in performing data modeling, analyzing, and predicting the spread of COVID-19 with the ArcGIS API for Python, and other libraries such as pandas and numpy
163
163
# licenseInfo: ""
164
164
# tags: ["Data Science", "GIS", "Predictive", "Covid19", "Part 3"]
165
- # - title: Creating hurricane tracks using Geoanalytics
166
- # url: https://www.arcgis.com/home/item.html?id=c6106b0ead3f49059b326646eda85f9a
167
- # path: ./samples/04_gis_analysts_data_scientists/creating_hurricane_tracks_using_geoanalytics.ipynb
168
- # thumbnail: ./static/thumbnails/creating_hurricane_tracks_using_geoanalytics.png
169
- # snippet: Use GeoAnalytics to create hurricane tracks
170
- # description: The sample code below uses big data analytics (GeoAnalytics) to reconstruct hurricane tracks using data registered on a big data file share in the GIS
171
- # licenseInfo: ""
172
- # tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics"]
165
+ - title : Creating hurricane tracks using Geoanalytics
166
+ url : https://www.arcgis.com/home/item.html?id=c6106b0ead3f49059b326646eda85f9a
167
+ path : ./samples/04_gis_analysts_data_scientists/creating_hurricane_tracks_using_geoanalytics.ipynb
168
+ thumbnail : ./static/thumbnails/creating_hurricane_tracks_using_geoanalytics.png
169
+ snippet : Use GeoAnalytics to create hurricane tracks
170
+ description : The sample code below uses big data analytics (GeoAnalytics) to reconstruct hurricane tracks using data registered on a big data file share in the GIS
171
+ licenseInfo : " "
172
+ tags : ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics"]
173
173
# - title: Creating Raster Information Product using Raster Analytics
174
174
# url: https://www.arcgis.com/home/item.html?id=f0423a7df2064096a78e150a6fbf5ae4
175
175
# path: ./samples/04_gis_analysts_data_scientists/creating_raster_information_product_using_raster_analytics.ipynb
@@ -178,14 +178,14 @@ samples:
178
178
# description: This sample show the capabilities of imagery layers and raster analytics.
179
179
# licenseInfo: ""
180
180
# tags: ["Data Science", "GIS", "Raster Analytics", "Product"]
181
- # - title: Crime analysis and clustering using geoanalytics and pyspark.ml
182
- # url: https://www.arcgis.com/home/item.html?id=1410a28d3a8d4d2aa353efcf9b606b69
183
- # path: ./samples/04_gis_analysts_data_scientists/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.ipynb
184
- # thumbnail: ./static/thumbnails/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.png
185
- # snippet: Analyze crime in Chicago
186
- # description: Through this sample, we will demonstrate the utility of a number of geoanalytics tools including find_hot_spots, aggregate_points and calculate_density to visually understand geographical patterns.
187
- # licenseInfo: ""
188
- # tags: ["Data Science", "GIS", "Crime", "Clustering", "GeoAnalytics", "PySpark"]
181
+ - title : Crime analysis and clustering using geoanalytics and pyspark.ml
182
+ url : https://www.arcgis.com/home/item.html?id=1410a28d3a8d4d2aa353efcf9b606b69
183
+ path : ./samples/04_gis_analysts_data_scientists/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.ipynb
184
+ thumbnail : ./static/thumbnails/crime_analysis_and_clustering_using_geoanalytics_and_pyspark.png
185
+ snippet : Analyze crime in Chicago
186
+ description : Through this sample, we will demonstrate the utility of a number of geoanalytics tools including find_hot_spots, aggregate_points and calculate_density to visually understand geographical patterns.
187
+ licenseInfo : " "
188
+ tags : ["Data Science", "GIS", "Crime", "Clustering", "GeoAnalytics", "PySpark"]
189
189
- title : Designate Bike Routes for Commuting Professionals
190
190
url : https://www.arcgis.com/home/item.html?id=62b874f4e705448a95abac0240f3053d
191
191
path : ./samples/04_gis_analysts_data_scientists/designate_bike_routes_for_commuting_professionals.ipynb
@@ -404,14 +404,14 @@ samples:
404
404
# description: In this notebook you will analyze the aggregated tracks to answer important questions about hurricane severity and how they correlate over time.
405
405
# licenseInfo: ""
406
406
# tags: ["Data Science", "GIS", "Hurricane", "Tracks", "GeoAnalytics", "Part 3"]
407
- # - title: Predict Floods with Unit Hydrographs
408
- # url: https://www.arcgis.com/home/item.html?id=2bbf431943304ddeba48d00d14f8c34f
409
- # path: ./samples/04_gis_analysts_data_scientists/predict-floods-with-unit-hydrographs.ipynb
410
- # thumbnail: ./static/thumbnails/predict-floods-with-unit-hydrographs.png
411
- # snippet: Estimate stream runoff during a predicted rainstorm in Vermont.
412
- # description: Estimate stream runoff during a predicted rainstorm in Vermont.
413
- # licenseInfo: ""
414
- # tags: ["Data Science", "GIS", "Raster", "Floods", "Prediction", "Hydrograph"]
407
+ - title : Predict Floods with Unit Hydrographs
408
+ url : https://www.arcgis.com/home/item.html?id=2bbf431943304ddeba48d00d14f8c34f
409
+ path : ./samples/04_gis_analysts_data_scientists/predict-floods-with-unit-hydrographs.ipynb
410
+ thumbnail : ./static/thumbnails/predict-floods-with-unit-hydrographs.png
411
+ snippet : Estimate stream runoff during a predicted rainstorm in Vermont.
412
+ description : Estimate stream runoff during a predicted rainstorm in Vermont.
413
+ licenseInfo : " "
414
+ tags : ["Data Science", "GIS", "Raster", "Floods", "Prediction", "Hydrograph"]
415
415
# - title: Predicting El Niño–Southern Oscillation through correlation and time series analysis/deep learning
416
416
# url: https://www.arcgis.com/home/item.html?id=69df9348e964433d86a5c0fb8aaa48de
417
417
# path: ./samples/04_gis_analysts_data_scientists/predicting_enso.ipynb
@@ -453,14 +453,14 @@ samples:
453
453
description : Weighted Linear Combination (WLC) method based on combined GIS and Remote Sensing techniques is used in the sample to create a potential hazard map for avalanches.
454
454
licenseInfo : " "
455
455
tags : ["Data Science", "GIS", "Avalanche", "Mapping"]
456
- # - title: Spatial and temporal distribution of service calls using big data tools
457
- # url: https://www.arcgis.com/home/item.html?id=7b6991aa6f4d4ce0be6e43badb04d117
458
- # path: ./samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls.ipynb
459
- # thumbnail: ./static/thumbnails/spatial_and_temporal_trends_of_service_calls.png
460
- # snippet: Use big data tools for spatial and temporal distribution
461
- # description: This sample demonstrates ability of ArcGIS API for Python to perform big data analysis on your infrastructure.
462
- # licenseInfo: ""
463
- # tags: ["Data Science", "GIS", "Service Calls", "GeoAnalytics", "Trends", "Spatial", "Temporal"]
456
+ - title : Spatial and temporal distribution of service calls using big data tools
457
+ url : https://www.arcgis.com/home/item.html?id=7b6991aa6f4d4ce0be6e43badb04d117
458
+ path : ./samples/04_gis_analysts_data_scientists/spatial_and_temporal_trends_of_service_calls.ipynb
459
+ thumbnail : ./static/thumbnails/spatial_and_temporal_trends_of_service_calls.png
460
+ snippet : Use big data tools for spatial and temporal distribution
461
+ description : This sample demonstrates ability of ArcGIS API for Python to perform big data analysis on your infrastructure.
462
+ licenseInfo : " "
463
+ tags : ["Data Science", "GIS", "Service Calls", "GeoAnalytics", "Trends", "Spatial", "Temporal"]
464
464
- title : Temperature forecast using time series data
465
465
url : https://www.arcgis.com/home/item.html?id=cf173caaba3f495f9592a9f180361ee4
466
466
path : ./samples/04_gis_analysts_data_scientists/temperature_forecast_using_time_series_data.ipynb
@@ -640,15 +640,15 @@ samples:
640
640
# licenseInfo: ''
641
641
# tags: ['Data Science', 'GIS', "Maps", "Web Scenes", "Publish"]
642
642
- title : Building a change detection app using Jupyter Dashboard
643
- url : https://geosaurus.maps .arcgis.com/home/item.html?id=e3a0e48329cf4213a15574dd4b6b7694
643
+ url : https://www .arcgis.com/home/item.html?id=e3a0e48329cf4213a15574dd4b6b7694
644
644
path : ./samples/02_power_users_developers/building_a_change_detection_app_using_jupyter_dashboard.ipynb
645
645
thumbnail : ./static/thumbnails/jupyter_dashboard_change.png
646
646
snippet : Create an interactive jupyter dashboard
647
647
description : This sample illustrates an interactive Jupyter dashboard web app which can be used to detect the changes in vegetation between the two dates.
648
648
licenseInfo : ' '
649
649
tags : ['Jupyter', 'Dashboard', "Vegetation", "raster"]
650
650
- title : Identifying country names from incomplete house addresses
651
- url : https://www.arcgis.com/home/item.html?id=55ec14f803774022862bcbda96653a0e
651
+ url : https://www.arcgis.com/home/item.html?id=d52e28b3cd854c7fa92157f5cc46ca2c
652
652
path : ./samples/04_gis_analysts_data_scientists/identifying-country-names-from-incomplete-house-addresses.ipynb
653
653
thumbnail : ./static/thumbnails/identifying_country_names_from_incomplete_house_addresses.jpg
654
654
snippet : Build a classifier to predict the country for incomplete house addresses.
@@ -745,7 +745,7 @@ samples:
745
745
# runtime: advanced_gpu
746
746
# tags: ["Data Science", "GIS", "Coastline Extraction", "Imagery"]
747
747
- title : Translating Story Map from one language to another using Deep Learning
748
- url : https://www.arcgis.com/home/item.html?id=15a731751bad43c7abf7258b7aa90bac
748
+ url : https://www.arcgis.com/home/item.html?id=747174e3770940369ee9b14499ae5014
749
749
path : ./samples/04_gis_analysts_data_scientists/translating_story_map_from_one_language_to_another.ipynb
750
750
thumbnail : ./static/thumbnails/default.png
751
751
snippet : In this notebook, we will pick a story map written in English language, and create another story map with the text translated to Spanish language using the arcgis.learn.text's TextTranslator class.
@@ -789,6 +789,33 @@ samples:
789
789
licenseInfo : " "
790
790
runtime : advanced_gpu
791
791
tags : ["Data Science", "GIS", "Stream Extraction", "Deep Learning"]
792
+ # - title: Supervised learning of tabular data using AutoML
793
+ # url: https://www.arcgis.com/home/item.html?id=06486550d1e148e298a9d572cfedcf5e
794
+ # path: ./samples/04_gis_analysts_data_scientists/tabular_data_supervised_learning_using_automl.ipynb
795
+ # thumbnail: ./static/thumbnails/default.png
796
+ # snippet: arcgis.learn users will now be able to use AutoML for supervised learning classification or regression problems involving tabular data.
797
+ # description: arcgis.learn users will now be able to use AutoML for supervised learning classification or regression problems involving tabular data.
798
+ # licenseInfo: ""
799
+ # runtime: advanced
800
+ # tags: ["Data Science", "GIS", "Supervised Learning", "Tabular Data"]
801
+ # - title: Model explainability for ML Models
802
+ # url: https://www.arcgis.com/home/item.html?id=3eaade48a6204a08861b9cfb2497be83
803
+ # path: ./samples/04_gis_analysts_data_scientists/model_explainability_using_shap_for_tabular_data.ipynb
804
+ # thumbnail: ./static/thumbnails/default.png
805
+ # snippet: arcgis.learn has now added explainability feature to all of its models that work with tabular data. This includes all the MLModels and the fully connected networks.
806
+ # description: arcgis.learn has now added explainability feature to all of its models that work with tabular data. This includes all the MLModels and the fully connected networks.
807
+ # licenseInfo: ""
808
+ # runtime: advanced
809
+ # tags: ["Data Science", "GIS", "Supervised Learning", "Tabular Data"]
810
+ # - title: Determining site suitability for oil palm plantation
811
+ # url: https://www.arcgis.com/home/item.html?id=47d07342d1204449bb661d6cb12d0368
812
+ # path: ./samples/04_gis_analysts_data_scientists/determining_site_suitability_for_oil_palm_plantation.ipynb
813
+ # thumbnail: ./static/thumbnails/default.png
814
+ # snippet: In this notebook, we determine the site suitability for oil palm development.
815
+ # description: In this notebook, we determine the site suitability for oil palm development.
816
+ # licenseInfo: ""
817
+ # runtime: advanced
818
+ # tags: ["Data Science", "GIS", "Site Suitability", "Raster Analysis"]
792
819
guides : []
793
820
labs :
794
821
- title : Create Data
0 commit comments