|
29 | 29 | "* [GIS analysts and data sciencists](/python/samples)\n",
|
30 | 30 | " * [Tonga Volcano Eruption - SO2 Analysis](/python/samples/tonga-volcano-eruption-2022)\n",
|
31 | 31 | "* [Advanced Machine Learning](/python/samples)\n",
|
32 |
| - " * [2d Computer Vision]\n", |
33 |
| - " * [Object Detection]\n", |
| 32 | + " * 2d Computer Vision\n", |
| 33 | + " * Object Detection\n", |
34 | 34 | " * [Detecting Palm Trees using Deep Learning](/python/samples/detecting-palm-trees-using-deep-learning)\n",
|
35 | 35 | " * [Detecting Swimming Pools using Automated Deep Learning](/python/samples/detecting-swimming-pools-using-automated-machine-learning)\n",
|
36 |
| - " * [Feature Extraction]\n", |
| 36 | + " * Feature Extraction\n", |
37 | 37 | " * [Streams extraction using deep learning](/python/samples/streams-extraction-using-deeplearning)\n",
|
38 | 38 | " * [Extracting features and Land Use Land Cover using Panoptic Segmentation ](/python/samples/extracting0-features-and-land-use-land-cover-using-panoptic-segmentation)\n",
|
39 | 39 | " * [Coastline extraction using Landsat-8 multispectral imagery and band ratio technique](/python/samples/coastline-extraction-usa-landsat8-multispectral-imagery)\n",
|
40 |
| - " * [Object Classification]\n", |
| 40 | + " * Object Classification\n", |
41 | 41 | " * [Traffic Light Detection in Oriented Imagery Using ArcGIS Pretrained Model](/python/samples/traffic-light-detection-on-oriented-imagery)\n",
|
42 |
| - " * [Generative Models]\n", |
| 42 | + " * Generative Models\n", |
43 | 43 | " * [Generating Land Surface Temperature from multispectral imagery using Pix2Pix](/python/samples/generating-lst-from-multispectral-imagery-using-pix2pix)\n",
|
44 | 44 | " * [Generating cloud masks from satellite imagery - Part I ](/python/samples/cloud-detector-part1-cloudless-sentinel-&-unsupervised)\n",
|
45 |
| - " * [Other Imagery Use Cases]\n", |
| 45 | + " * Other Imagery Use Cases\n", |
46 | 46 | " * [Flood inundation mapping and monitoring using SAR data and deep learning](/python/samples/flood-inundation-mapping-using-sar-data-and-deep-learning)\n",
|
47 | 47 | " * [Cloud removal using pre-trained deep learning model and raster function](/python/samples/cloud-removal-using-pre-trained-deep-learning-model-and-raster-function)\n",
|
48 | 48 | " * [Property Valuation in King County USA using AutoML and Geoenriched data](/python/samples/house-price-prediction-using-automl)\n",
|
|
151 | 151 | "#### [`arcgis.gis.server`](/python/api-reference/arcgis.gis.server.html)\n",
|
152 | 152 | "* [`Service`](/python/api-reference/arcgis.gis.server.html#service)\n",
|
153 | 153 | " * Adds method:\n",
|
154 |
| - " * [`service_manifest()`](/api-reference/arcgis.gis.server.html#arcgis.gis.server.Service.service_manifest) - result of [**Public Repo Issue #1316](https://github.com/Esri/arcgis-python-api/issues/1316)\n", |
| 154 | + " * [`service_manifest()`](/api-reference/arcgis.gis.server.html#arcgis.gis.server.Service.service_manifest) - result of [**Public Repo Issue #1316**](https://github.com/Esri/arcgis-python-api/issues/1316)\n", |
155 | 155 | "* [`ServicesDirectory`](/python/api-reference/arcgis.gis.server.html#servicesdirectory)\n",
|
156 | 156 | " * Adds method:\n",
|
157 | 157 | " * [`footprints()`](/python/api-reference/arcgis.gis.server.html#arcgis.gis.server.catalog.ServicesDirectory.footprints)\n",
|
|
251 | 251 | " * Adds ability to create object directly for use with a specific branch [`version`](/python/api-reference/arcgis.features.managers.html#version)\n",
|
252 | 252 | " * Adds `return_moment` parameter to:\n",
|
253 | 253 | " * [`add()`](/python/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.add)\n",
|
254 |
| - " * [`delete()`](/pythonhttp://localhost:8000/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.delete)\n", |
255 |
| - " * [`update()`](/pythonhttp://localhost:8000/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.update)\n", |
| 254 | + " * [`delete()`](/python/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.delete)\n", |
| 255 | + " * [`update()`](/python/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.update)\n", |
256 | 256 | " * Adds `rollback_on_failure` parameter to:\n",
|
257 |
| - " * [`delete()`](/pythonhttp://localhost:8000/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.delete)\n", |
| 257 | + " * [`delete()`](/python/api-reference/arcgis.features.managers.html#arcgis.features.managers.AttachmentManager.delete)\n", |
258 | 258 | " \n",
|
259 | 259 | "#### [`arcgis.features.analyze_patterns`](/python/api-reference/arcgis.features.analyze_patterns.html)\n",
|
260 | 260 | "* [`interprolate_points()`](/python/api-reference/arcgis.features.analyze_patterns.html#interpolate-points)\n",
|
|
493 | 493 | " * `show_results()`\n",
|
494 | 494 | " * `average_precision_score()`\n",
|
495 | 495 | "* [Feature, Tabular, anad Timeseries models](/python/api-reference/arcgis.learn.toc.html#feature-tabular-and-timeseries-models)\n",
|
496 |
| - " * Adds models*:\n", |
| 496 | + " * Adds models:\n", |
497 | 497 | " * [`PSETAE`](/python/api-reference/arcgis.learn.toc.html#psetae)\n",
|
498 | 498 | " * [`TimeSeriesModel`](/python/api-reference/arcgis.learn.toc.html#timeseriesmodel)\n",
|
499 | 499 | " * Adds parameters:\n",
|
500 | 500 | " * `location_var`\n",
|
501 |
| - " * Adds multivariate support for space time cubes\n", |
502 |
| - " * [`load()`](/python/api-reference/arcgis.learn.toc.html#arcgis.learn.TimeSeriesModel.load)\n", |
503 |
| - " * Adds deep learning package and parent directory support for\n", |
| 501 | + " * Adds multivariate support for space time cubes\n", |
| 502 | + " * [`load()`](/python/api-reference/arcgis.learn.toc.html#arcgis.learn.TimeSeriesModel.load)\n", |
| 503 | + " * Adds deep learning package and parent directory support for\n", |
504 | 504 | "* [Unstructured Text Models](/python/api-reference/arcgis.learn.toc.html#unstructured-text-models)\n",
|
505 | 505 | " * [`TextClassifier`](/python/api-reference/arcgis.learn.text.html#textclassifier)\n",
|
506 | 506 | " * [`predict()`](/python/api-reference/arcgis.learn.text.html#arcgis.learn.text.TextClassifier.predict)\n",
|
|
641 | 641 | " * [`to_featurelayer()`](/python/api-reference/arcgis.features.toc.html#arcgis.features.GeoAccessor.to_featurelayer)\n",
|
642 | 642 | " * Fixes error when `np.nan` values exist within the data in environment without `ArcPy`\n",
|
643 | 643 | " * [`to_featureset()`](/python/api-reference/arcgis.features.toc.html#arcgis.features.GeoAccessor.to_featureset)\n",
|
644 |
| - " * Fixes [**Public Repo Issue #1281](https://github.com/Esri/arcgis-python-api/issues/1281) `AttributeError` regarding `.str` accessor when data frame has column with `np.nan` values\n", |
| 644 | + " * Fixes [**Public Repo Issue #1281**](https://github.com/Esri/arcgis-python-api/issues/1281) `AttributeError` regarding `.str` accessor when data frame has column with `np.nan` values\n", |
645 | 645 | " * [`from_table()`](/python/api-reference/arcgis.features.toc.html#arcgis.features.GeoAccessor.from_table)\n",
|
646 | 646 | " * Fixes [**Public Repo Issue #1272**](https://github.com/Esri/arcgis-python-api/issues/1272) where `AttributeError` raised regarding `_as_array` when run in `ArcGIS Pro`\n",
|
647 | 647 | " * [`from_xy()`](/python/api-reference/arcgis.features.toc.html#arcgis.features.GeoAccessor.from_xy)\n",
|
|
0 commit comments