|
164 | 164 | "metadata": {},
|
165 | 165 | "outputs": [],
|
166 | 166 | "source": [
|
167 |
| - "chips = export_training_data(planet_mosaic_data, well_pads, \"PNG\", {\"x\":448,\"y\":448}, {\"x\":224,\"y\":224}, \n", |
168 |
| - " \"PASCAL_VOC_rectangles\", 75, \"planetdemo\")" |
| 167 | + "chips = export_training_data(input_raster=planet_mosaic_data,\n", |
| 168 | + " input_class_data=well_pads,\n", |
| 169 | + " chip_format=\"PNG\",\n", |
| 170 | + " tile_size={\"x\":448,\"y\":448},\n", |
| 171 | + " stride_size={\"x\":224,\"y\":224},\n", |
| 172 | + " metadata_format=\"PASCAL_VOC_rectangles\",\n", |
| 173 | + " classvalue_field='pad_type',\n", |
| 174 | + " buffer_radius=75,\n", |
| 175 | + " output_location=\"/rasterStores/rasterstorename/wellpaddata\")" |
169 | 176 | ]
|
170 | 177 | },
|
171 | 178 | {
|
|
187 | 194 | "source": [
|
188 | 195 | "from arcgis.learn import prepare_data\n",
|
189 | 196 | "\n",
|
190 |
| - "data = prepare_data('/arcgis/directories/rasterstore/planetdemo', {1: ' Pad'})" |
| 197 | + "data = prepare_data('/rasterStores/rasterstorename/wellpaddata', {1: ' Pad'})" |
191 | 198 | ]
|
192 | 199 | },
|
193 | 200 | {
|
|
453 | 460 | "outputs": [],
|
454 | 461 | "source": [
|
455 | 462 | "# save the trained model\n",
|
456 |
| - "ssd.save('wellpad_planet_model')" |
| 463 | + "ssd.save('wellpad_planet_model', publish=True)" |
457 | 464 | ]
|
458 | 465 | },
|
459 | 466 | {
|
460 | 467 | "cell_type": "markdown",
|
461 | 468 | "metadata": {},
|
462 | 469 | "source": [
|
463 |
| - "## Deploy trained model" |
| 470 | + "Once a model has been trained, it can be added to ArcGIS Enterprise as a deep learning package by passing ``publish=True`` parameter." |
464 | 471 | ]
|
465 | 472 | },
|
466 | 473 | {
|
467 | 474 | "cell_type": "markdown",
|
468 | 475 | "metadata": {},
|
469 | 476 | "source": [
|
470 |
| - "Once a model has been trained, it can be added to ArcGIS Enterprise as a deep learning package." |
471 |
| - ] |
472 |
| - }, |
473 |
| - { |
474 |
| - "cell_type": "code", |
475 |
| - "execution_count": 13, |
476 |
| - "metadata": {}, |
477 |
| - "outputs": [], |
478 |
| - "source": [ |
479 |
| - "# Upload as first class item on agol or portal as a deep learning package \n", |
480 |
| - "trained_model = '/arcgis/directories/rasterstore/planetdemo/models/wellpad_model_planet_2501/wellpad_model_planet_2501.zip'" |
481 |
| - ] |
482 |
| - }, |
483 |
| - { |
484 |
| - "cell_type": "code", |
485 |
| - "execution_count": 14, |
486 |
| - "metadata": {}, |
487 |
| - "outputs": [], |
488 |
| - "source": [ |
489 |
| - "model_package = gis.content.add(item_properties={\"type\":\"Deep Learning Package\",\"typeKeywords\":\"Deep Learning, Raster\",\n", |
490 |
| - " \"title\":\"Well Pad Detection Model Planet 2501\",\n", |
491 |
| - " \"tags\":\"deeplearning\", 'overwrite':'True'}, data=trained_model)\n", |
492 |
| - "# Or publish using:\n", |
493 |
| - "# ssd.save('Well Pad Detection Model Planet 2501', publish=True, gis=gis)" |
| 477 | + "## Model management" |
494 | 478 | ]
|
495 | 479 | },
|
496 | 480 | {
|
|
528 | 512 | }
|
529 | 513 | ],
|
530 | 514 | "source": [
|
| 515 | + "model_package = gis.content.get('id=32cb1df2834943f7a6ff3ab461aa9352')\n", |
531 | 516 | "model_package"
|
532 | 517 | ]
|
533 | 518 | },
|
534 |
| - { |
535 |
| - "cell_type": "markdown", |
536 |
| - "metadata": {}, |
537 |
| - "source": [ |
538 |
| - "## Model management" |
539 |
| - ] |
540 |
| - }, |
541 | 519 | {
|
542 | 520 | "cell_type": "markdown",
|
543 | 521 | "metadata": {},
|
|
732 | 710 | "name": "python",
|
733 | 711 | "nbconvert_exporter": "python",
|
734 | 712 | "pygments_lexer": "ipython3",
|
735 |
| - "version": "3.6.10" |
| 713 | + "version": "3.7.11" |
736 | 714 | },
|
737 | 715 | "toc": {
|
738 | 716 | "base_numbering": 1,
|
|
0 commit comments