|
52 | 52 | "cell_type": "markdown",
|
53 | 53 | "metadata": {},
|
54 | 54 | "source": [
|
55 |
| - "# Introduction\n", |
| 55 | + "## Introduction\n", |
56 | 56 | "\n",
|
57 |
| - "Geospatial data is not only available in the form of maps and feature/imagery layers, but also in form of unstructured text.\n" |
| 57 | + "Geospatial data is not only available in the form of maps and feature/imagery layers, but also in form of unstructured text." |
58 | 58 | ]
|
59 | 59 | },
|
60 | 60 | {
|
|
85 | 85 | "cell_type": "markdown",
|
86 | 86 | "metadata": {},
|
87 | 87 | "source": [
|
88 |
| - "# Prerequisites\n", |
| 88 | + "## Prerequisites\n", |
89 | 89 | "\n",
|
90 | 90 | "- **Data preparation** and **model training workflows** for entity extraction using `arcgis.learn` is based on [spaCy](https://spacy.io/usage/linguistic-features#named-entities) & [Hugging Face Transformers](https://huggingface.co/transformers/v3.0.2/index.html) libraries. A user can choose an appropriate backbone to train the model. \n",
|
91 | 91 | "- Refer to the section [Install deep learning dependencies of arcgis.learn module](https://developers.arcgis.com/python/guide/install-and-set-up/#Install-deep-learning-dependencies) for detailed explanation about deep learning dependencies.\n",
|
|
98 | 98 | "cell_type": "markdown",
|
99 | 99 | "metadata": {},
|
100 | 100 | "source": [
|
101 |
| - "# EntityRecognizer Model Basics\n", |
| 101 | + "## EntityRecognizer Model Basics\n", |
102 | 102 | "\n",
|
103 | 103 | "`EntityRecognizer` model in `arcgis.learn` can be created with either [Hugging Face Transformers](https://huggingface.co/transformers/v3.0.2/index.html) or with [spaCy's](https://spacy.io/) [EntityRecognizer](https://spacy.io/api/entityrecognizer) architecture."
|
104 | 104 | ]
|
|
201 | 201 | "cell_type": "markdown",
|
202 | 202 | "metadata": {},
|
203 | 203 | "source": [
|
204 |
| - "# Data preparation\n", |
| 204 | + "## Data preparation\n", |
205 | 205 | "\n",
|
206 |
| - "- **Entity Recognizer** can consume labeled training data in three different formats (csv, [ner_json](https://spacy.io/api/annotation#json-input), [IOB](https://spacy.io/api/annotation#iob) & [BILUO](https://spacy.io/api/annotation#biluo)).\n", |
| 206 | + "- **Entity Recognizer** can consume labeled training data in four different formats (csv, [ner_json](https://spacy.io/api/annotation#json-input), [IOB](https://spacy.io/api/annotation#iob) & [BILUO](https://spacy.io/api/annotation#biluo)).\n", |
207 | 207 | "- Example structure for **csv** format:\n",
|
208 | 208 | " - Columns:\n",
|
209 | 209 | " - The CSV should include a `text` column.\n",
|
|
474 | 474 | "cell_type": "markdown",
|
475 | 475 | "metadata": {},
|
476 | 476 | "source": [
|
477 |
| - "# EntityRecognizer model\n", |
| 477 | + "## EntityRecognizer model\n", |
478 | 478 | "\n",
|
479 | 479 | "`EntityRecognizer` model in `arcgis.learn` can be used with [spaCy's](https://spacy.io/) [EntityRecognizer](https://spacy.io/api/entityrecognizer) backbone or with [Hugging Face Transformers](https://huggingface.co/transformers/v3.0.2/index.html) backbones. The model training and inferencing workflow is similar to computer vision models in `arcgis.learn`.\n",
|
480 | 480 | "\n",
|
|
1323 | 1323 | "cell_type": "markdown",
|
1324 | 1324 | "metadata": {},
|
1325 | 1325 | "source": [
|
1326 |
| - "# Visualize entities\n", |
| 1326 | + "## Visualize entities\n", |
1327 | 1327 | "\n",
|
1328 | 1328 | "We can utilize SpaCy's named entity visualizer to check the model's prediction on new text one at a time."
|
1329 | 1329 | ]
|
|
1443 | 1443 | "cell_type": "markdown",
|
1444 | 1444 | "metadata": {},
|
1445 | 1445 | "source": [
|
1446 |
| - "# References" |
| 1446 | + "## References" |
1447 | 1447 | ]
|
1448 | 1448 | },
|
1449 | 1449 | {
|
|
1482 | 1482 | "name": "python",
|
1483 | 1483 | "nbconvert_exporter": "python",
|
1484 | 1484 | "pygments_lexer": "ipython3",
|
1485 |
| - "version": "3.11.8" |
| 1485 | + "version": "3.11.0" |
1486 | 1486 | }
|
1487 | 1487 | },
|
1488 | 1488 | "nbformat": 4,
|
|
0 commit comments