Skip to content

What do obs and preds mean? #27

@rlarudgus99

Description

@rlarudgus99

Hi! Thanks for your great work!

I am studying your research.
I just want to know the meaning of the obs and preds that baselineUtils.py uses to slice an array, respectively.

Also, among the get_strid_data_clust functions

ped = raw_data.ped.unique()
frame=[]
ped_ids=[]
for p in ped:
    for i in range(1+(raw_data[raw_data.ped == p].shape[0] - gt_size - horizon) // step):
        frame.append(dt[dt.ped == p].iloc[i * step:i * step + gt_size + horizon, [0]].values.squeeze())
        inp_te.append(raw_data[raw_data.ped == p].iloc[i * step:i * step + gt_size + horizon, 2:4].values)
        ped_ids.append(p)

frames=np.stack(frame)
inp_te_np = np.stack(inp_te)
ped_ids=np.stack(ped_ids)

What does fram mean in the part?

I'd like to ask you something else.
The following formula is used to calculate loss

loss = F.pairwise_distance(pred[:, :,0:2].contiguous().view(-1, 2), ((batch['trg'][:, :, 2:4].to(device)-mean.to(device))/std.to(device)).contiguous().view(-1, 2).to(device)).mean() + torch.mean(torch.abs(pred[:,:,2]))

Why add the absolute value mean of the Output Feature, pred[:, :, 2] , which is not used for prediction??

Looking forward to your reply!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions