Skip to content

Welcome to use OpenS2V-Nexus to evaluate your latest models #2

@SHYuanBest

Description

@SHYuanBest

@wangqiang9 Thanks for great work! We recently tackle the core challenges of ​​Subject-to-Video Generation (S2V)​​ by systematically building the first complete infrastructure—featuring an evaluation benchmark and a million-scale dataset! ✨Welcom to try it!

🧠 Introducing ​​OpenS2V-Eval​​—the first ​​fine-grained S2V benchmark​​, with ​​180 multi-domain prompts + real/synthetic test pairs​​. We propose ​​NexusScore​​, ​​NaturalScore​​, and ​​GmeScore​​ to precisely quantify model performance across ​​subject consistency, naturalness, and text alignment​​ ✔

📊 Using this framework, we conduct a ​​comprehensive evaluation of 16 leading S2V models​​, revealing their strengths/weaknesses in complex scenarios! (including Fantasy-ID)

🔥 ​​OpenS2V-5M dataset​​ now available! A ​​5.4M 720P HD​​ collection of ​​subject-text-video triplets​​, enabled by ​​cross-video association segmentation + multi-view synthesis​​ for ​​diverse subjects & high-quality annotations​​ 🚀

​​All resources open-sourced​​: Paper, Code, Data, and Evaluation Tools 📄
Let's advance S2V research together! 💡

🔗 ​​Links​​:
Code: https://github.com/PKU-YuanGroup/OpenS2V-Nexus
Project: https://pku-yuangroup.github.io/OpenS2V-Nexus
LeaderBoard: https://huggingface.co/spaces/BestWishYsh/OpenS2V-Eval
OpenS2V-5M: https://huggingface.co/datasets/BestWishYsh/OpenS2V-5M

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions