Skip to content

Imputation of dataframe with order factors fails #16

@sibipx

Description

@sibipx

Imputing a dataframe with ordered factors gives error. See example below on diamonds dataset from ggplot2.

I am not sure, but the problem seems to be when checking classes. It seems that regression models are assigned to ordered factors (they are not seen as factor)

  newClasses <- sapply(dat[, vara, with = FALSE], class)
  modelTypes <- ifelse(newClasses[varn] == "factor", "Classification", 
    "Regression")

It would be more sensible to treat ordered factors as factors (multinomial). Thanks!

Example:

> library(miceRanger)
> library(ggplot2)
> 
> data(diamonds)
> 
> diamonds_miss <- amputeData(diamonds, perc = 0.3)
> 
> str(diamonds_miss)
Classes ‘data.table’ and 'data.frame':	53940 obs. of  10 variables:
 $ carat  : num  0.23 NA 0.23 0.29 NA 0.24 0.24 NA NA 0.23 ...
 $ cut    : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 NA 2 NA NA 3 1 3 ...
 $ color  : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 NA NA 5 ...
 $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 NA 5 NA 2 6 7 3 4 5 ...
 $ depth  : num  61.5 59.8 NA NA 63.3 62.8 NA 61.9 NA 59.4 ...
 $ table  : num  55 61 NA 58 NA 57 57 55 61 61 ...
 $ price  : int  326 326 327 334 335 336 336 337 337 NA ...
 $ x      : num  3.95 NA NA 4.2 4.34 NA NA 4.07 3.87 NA ...
 $ y      : num  3.98 3.84 4.07 4.23 NA 3.96 NA 4.11 NA 4.05 ...
 $ z      : num  NA 2.31 NA 2.63 2.75 2.48 2.47 2.53 2.49 NA ...
 - attr(*, ".internal.selfref")=<externalptr> 
> 
> is.factor(diamonds_miss$cut)
[1] TRUE
> class(diamonds_miss$cut)
[1] "ordered" "factor" 
> miceRanger::miceRanger(diamonds_miss, m = 2, maxiter = 2,
+                        returnModels = TRUE,
+                        verbose = TRUE)

Process started at 2022-05-19 17:39:38 
data.table 1.14.0 using 6 threads (see ?getDTthreads).  Latest news: r-datatable.com

dataset 1 
iteration 1 	 | carat | cut
dataset 2 
iteration 1 	 | carat | cutError in miceRanger::miceRanger(diamonds_miss, m = 2, maxiter = 2, returnModels = TRUE,  : 
  Evaluation failed with error <Error in get.knnx(data, query, k, algorithm): Data non-numeric
>. This is probably our fault - please open an issue at https://github.com/FarrellDay/miceRanger/issues with a reproduceable example.
> miceRanger::miceRanger(data.table(diamonds_miss), m = 2, maxiter = 2,
+                        returnModels = TRUE,
+                        verbose = TRUE)

Process started at 2022-05-19 17:41:29 

dataset 1 
iteration 1 	 | carat | cut
dataset 2 
iteration 1 	 | carat | cutError in miceRanger::miceRanger(data.table(diamonds_miss), m = 2, maxiter = 2,  : 
  Evaluation failed with error <Error in get.knnx(data, query, k, algorithm): Data non-numeric
>. This is probably our fault - please open an issue at https://github.com/FarrellDay/miceRanger/issues with a reproduceable example.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions