A simple program to calculate the Feynman integral #262
iisiaccNewton
started this conversation in
General
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
I found that FCFeynmanParametrize can only handle some simple integrals, I don't know if there are other functions that can calculate integrals, but after reading the chapter LOOP in the manual, I think there shouldn't be any other functions.so I spent a few days writing a function to calculate the following integral:


here is the code:
{
spd[p_, q_] := FVD[p, a]FVD[q, a];
spd[p_] := spd[p, p];
rule2 = FVD[p, [Mu]_] -> FVD[p, [Mu]] + yFVD[q, [Mu]];
ASF[g_, {p_, q_}] := Expand[g[p, q] /. rule2];
extract[f_] := Module[
{factors1, factors2, product1, integrand},
factors1 = Cases[f, FVD[p, ], Infinity];
factors2 = Cases[f, spd[p], Infinity]; product1 = Times @@ factors1;
integrand = If[factors2 == {}, product1, FVD[p, a]*product1];
{
integrand,
f/integrand
}
];
FeynmanIntegral[{p, d_ : D}, 1, {p_, m_, n_}] := (-1)^n*
I/(4 [Pi])^(d/2)Gamma[n - d/2]/Gamma[n]1/(m^2)^(n - d/2);
FeynmanIntegral[{p_, d_ : D}, spd[p_], {p_, m_, n_}] := (-1)^n
I/(4 [Pi])^(d/2)Gamma[n - d/2 - 1]/
Gamma[n](-d/2)/(m^2)^(n - d/2 - 1);
FeynmanIntegral[{p_, d_ : D}, FVD[p_, a_], {p_, m_, n_}] := 0;
FeynmanIntegral[{p_, d_ : D},
FVD[p_, a_]FVD[p_, b_], {p_, m_, n_}] :=
MTD[a, b]/dFeynmanIntegral[{p, d}, spd[p], {p, m, n}];
FeynmanIntegral[{p_, d_ : D}, f_, {p_, m_, n_}] :=
If[FreeQ[f, Plus],
extract[f][[2]]
FeynmanIntegral[{p, d}, extract[f][[1]], {p, m, n}],
FeynmanIntegral[{p, d}, f, {p, m, n}]];
FeynmanIntegral[{p_, d_ : D}, f_ + g_, {p_, m_, n_}] :=
FeynmanIntegral[{p, d}, f, {p, m, n}] +
FeynmanIntegral[{p, d}, g, {p, m, n}];
FeynmanIntegral[{p_, d_ : D}, {f_, p_, q_}, {p_, s_, m_}, {p_ - q_,
r_, n_}] :=
With[
{INT = (n + m - 1)Binomial[n + m - 2, n - 1](1 - y)^(m - 1)*
y^(n - 1)*
Simplify[
FeynmanIntegral[{p, d},
ASF[f, {p, q}], {p,
Sqrt[s^2*(1 - y) + r^2y - y(1 - y)*spd[q]], n + m}]]},
HoldForm[Integrate[INT, {y, 0, 1}]]
];
}
there are some example;
Beta Was this translation helpful? Give feedback.
All reactions