Skip to content

Commit e02535b

Browse files
committed
Update public notes
1 parent c57ea63 commit e02535b

File tree

2 files changed

+37
-1
lines changed

2 files changed

+37
-1
lines changed

content/YOLO 论文阅读笔记.md

Lines changed: 36 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,42 @@ YOLO的方法是这样的:
4343

4444
$$Pr(Class_{i}|Object) * Pr(Object) * IOU^{truth}_{pred} = Pr(Class_{i}) * IOU^{truth}_{pred}$$
4545

46-
……
46+
### Network Design
47+
...
48+
49+
### Training
50+
We optimize for sum-squared error in the output of our
51+
model. We use sum-squared error because it is easy to op-
52+
timize, however it does not perfectly align with our goal of
53+
maximizing average precision. It weights localization er-
54+
ror equally with classification error which may not be ideal.
55+
Also, in every image many grid cells do not contain any
56+
object. This pushes the “confidence” scores of those cells
57+
towards zero, often overpowering the gradient from cells
58+
that do contain objects. This can lead to model instability,
59+
causing training to diverge early on.
60+
61+
他们使用了sum-squared error(SSE)误差值,因为很好优化。但是他们认为优化SSE和他们追求的**最大平均准确度**有所差别,**并且SSE将定位错误和分类错误看作是平等的,这可能会导致效果不够理想**。此外**如果图片中的单元格不包含物体,那会让单元格的可信度趋向0,时常导致总体的梯度倾向全都0而不是往有物体的方向靠**。这样子会让模型不稳定,而且早早出现预测偏差。
62+
63+
*remedy n.改进方法,补偿,改善措施 v.改进,补偿,纠正*
64+
65+
因此他们增强了预测框坐标带来的损失,并减少了框内不包含物体带来的损失。他们使用了$\lambda_{coor d}$和$\lambda_{noobj}$参数来实现这个。在论文中他们设置这两个值为5。
66+
67+
同时SSE还将大边框和小边框的误差看成平等的了——实际上,大边框的小偏差损失应该比小边框的小偏差小。为此,他们预测的是边框的宽度、高度的平方根,而不是直接预测宽高。
68+
69+
YOLO predicts multiple bounding boxes per grid cell.
70+
At training time we only want one bounding box predictor
71+
to be responsible for each object. We assign one predictor
72+
to be “responsible” for predicting an object based on which
73+
prediction has the highest current IOU with the ground
74+
truth. This leads to specialization between the bounding box
75+
predictors. Each predictor gets better at predicting certain
76+
sizes, aspect ratios, or classes of object, improving overall
77+
recall.
78+
79+
*这段我大脑要看烧了……*
80+
81+
虽然YOLO在每个单元格都会预测多个框,**但是YOLO只会将与真实物体框IOU最高的那个框参与进损失的计算中**。因此这些框能够不尽相同、各具特色(也就是原文说的`specialization 专业化`),不同的框各自擅长检测不同的的物体。
4782

4883
## Conclusion
4984
结构简单。可以直接在整张图上训练。检测和分类直接在一个损失函数上训练。Fast YOLO很快,模型推广性很好。
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
SSR MSE RMSE MAE SSR SST

0 commit comments

Comments
 (0)