|
| 1 | +package com.adventofcode.flashk.day21; |
| 2 | + |
| 3 | +import com.adventofcode.flashk.common.Vector2; |
| 4 | +import org.apache.commons.lang3.tuple.ImmutablePair; |
| 5 | +import org.apache.commons.lang3.tuple.Pair; |
| 6 | + |
| 7 | +import java.util.ArrayDeque; |
| 8 | +import java.util.Deque; |
| 9 | +import java.util.HashSet; |
| 10 | +import java.util.Set; |
| 11 | + |
| 12 | +public class StepCounter { |
| 13 | + |
| 14 | + private static final char ROCK = '#'; |
| 15 | + private static final char GARDEN_PLOT = '.'; |
| 16 | + private static final char REACH_TILE = '0'; |
| 17 | + |
| 18 | + private char[][] map; |
| 19 | + private char[][] solutionsMap; |
| 20 | + |
| 21 | + private int rows; |
| 22 | + private int cols; |
| 23 | + private int reachableTiles = 0; |
| 24 | + private Vector2 start; |
| 25 | + |
| 26 | + public StepCounter(char[][] inputs) { |
| 27 | + |
| 28 | + rows = inputs.length; |
| 29 | + cols = inputs[0].length; |
| 30 | + map = inputs; |
| 31 | + |
| 32 | + // Find starting position |
| 33 | + |
| 34 | + solutionsMap = new char[rows][]; |
| 35 | + for(int row = 0; row < rows; row++) { |
| 36 | + |
| 37 | + solutionsMap[row] = new char[cols]; |
| 38 | + |
| 39 | + for(int col = 0; col < cols; col++) { |
| 40 | + if(map[row][col] == 'S') { |
| 41 | + start = new Vector2(col, row); |
| 42 | + map[row][col] = GARDEN_PLOT; |
| 43 | + } |
| 44 | + solutionsMap[row][col] = map[row][col]; |
| 45 | + |
| 46 | + } |
| 47 | + } |
| 48 | + } |
| 49 | + |
| 50 | + public long solveA(int totalSteps) { |
| 51 | + |
| 52 | + // TODO, este algoritmo vale para datos muy pequeños, pero en este caso, la ramificación es muy amplia. |
| 53 | + Deque<Pair<Vector2,Integer>> queue = new ArrayDeque<>(); |
| 54 | + queue.add(ImmutablePair.of(start,0)); |
| 55 | + |
| 56 | + while(!queue.isEmpty() && queue.peek().getRight() < totalSteps) { |
| 57 | + Pair<Vector2,Integer> positionAndSteps = queue.poll(); |
| 58 | + |
| 59 | + Vector2 position = positionAndSteps.getLeft(); |
| 60 | + int steps = positionAndSteps.getRight(); |
| 61 | + |
| 62 | + map[position.getY()][position.getX()] = GARDEN_PLOT; |
| 63 | + |
| 64 | + Set<Pair<Vector2,Integer>> adjacentTiles = getAdjacentTiles(position, steps); |
| 65 | + for(Pair<Vector2,Integer> positionAndStep : adjacentTiles) { |
| 66 | + position = positionAndStep.getLeft(); |
| 67 | + map[position.getY()][position.getX()] = REACH_TILE; |
| 68 | + queue.add(positionAndStep); |
| 69 | + } |
| 70 | + } |
| 71 | + |
| 72 | + return countPositions(); |
| 73 | + } |
| 74 | + |
| 75 | + public long solveADFS(int totalSteps) { |
| 76 | + |
| 77 | + Set<Vector2> reachablePositions = new HashSet<>(); |
| 78 | + /* |
| 79 | + long result = countReachableTiles(start.getY(),start.getX()+1, 1, totalSteps); |
| 80 | + result += countReachableTiles(start.getY(), start.getX()-1, 1, totalSteps); |
| 81 | + result += countReachableTiles(start.getY()-1, start.getX(), 1, totalSteps); |
| 82 | + result += countReachableTiles(start.getY()+1, start.getX(), 1, totalSteps); |
| 83 | +
|
| 84 | + return result; |
| 85 | + */ |
| 86 | + |
| 87 | + countReachableTiles(start.getY(),start.getX()+1, 1, totalSteps, reachablePositions); |
| 88 | + countReachableTiles(start.getY(), start.getX()-1, 1, totalSteps, reachablePositions); |
| 89 | + countReachableTiles(start.getY()-1, start.getX(), 1, totalSteps, reachablePositions); |
| 90 | + countReachableTiles(start.getY()+1, start.getX(), 1, totalSteps, reachablePositions); |
| 91 | + |
| 92 | + return reachablePositions.size(); |
| 93 | + } |
| 94 | + |
| 95 | + private void countReachableTiles(int row, int col, int steps, int maxSteps, Set<Vector2> reachablePositions) { |
| 96 | + |
| 97 | + if(!isValid(row, col)) { |
| 98 | + return; |
| 99 | + } |
| 100 | + |
| 101 | + if(steps == maxSteps) { |
| 102 | + reachablePositions.add(new Vector2(col, row)); |
| 103 | + solutionsMap[row][col] = REACH_TILE; |
| 104 | + return; |
| 105 | + } |
| 106 | + |
| 107 | + // TODO esta condición está mal |
| 108 | + // Es necesario podar ramas que ya hayamos visitado para reducir el árbol de llamadas, pero hay que ver como. |
| 109 | + /*if(solutionsMap[row][col] == REACH_TILE) { |
| 110 | + return; // Already explored |
| 111 | + }*/ |
| 112 | + |
| 113 | + if(maxSteps % 2 == 0) { |
| 114 | + // Se buscan celdas pares |
| 115 | + if(steps % 2 == 0) { |
| 116 | + reachablePositions.add(new Vector2(col, row)); |
| 117 | + solutionsMap[row][col] = REACH_TILE; |
| 118 | + } |
| 119 | + |
| 120 | + } else { |
| 121 | + // Se buscan celdas impares |
| 122 | + if(steps % 2 != 0) { |
| 123 | + reachablePositions.add(new Vector2(col, row)); |
| 124 | + solutionsMap[row][col] = REACH_TILE; |
| 125 | + } |
| 126 | + } |
| 127 | + |
| 128 | + countReachableTiles(row,col+1, steps+1, maxSteps, reachablePositions); |
| 129 | + countReachableTiles(row, col-1, steps+1, maxSteps, reachablePositions); |
| 130 | + countReachableTiles(row-1, col, steps+1, maxSteps, reachablePositions); |
| 131 | + countReachableTiles(row+1, col, steps+1, maxSteps, reachablePositions); |
| 132 | + |
| 133 | + } |
| 134 | + |
| 135 | + private long countReachableTiles(int row, int col, int steps, int maxSteps) { |
| 136 | + |
| 137 | + if(!isValid(row, col)) { |
| 138 | + return 0; |
| 139 | + } |
| 140 | + |
| 141 | + if(steps == maxSteps) { |
| 142 | + return 1; |
| 143 | + } |
| 144 | + |
| 145 | + long result = countReachableTiles(row,col+1, steps+1, maxSteps); |
| 146 | + result += countReachableTiles(row, col-1, steps+1, maxSteps); |
| 147 | + result += countReachableTiles(row-1, col, steps+1, maxSteps); |
| 148 | + result += countReachableTiles(row+1, col, steps+1, maxSteps); |
| 149 | + |
| 150 | + return result; |
| 151 | + } |
| 152 | + |
| 153 | + |
| 154 | + private long countPositions() { |
| 155 | + long count = 0; |
| 156 | + for(int row = 0; row < rows; row++) { |
| 157 | + for(int col = 0; col < cols; col++) { |
| 158 | + if(map[row][col] == REACH_TILE) { |
| 159 | + count++; |
| 160 | + } |
| 161 | + } |
| 162 | + } |
| 163 | + return count; |
| 164 | + } |
| 165 | + private Set<Pair<Vector2,Integer>> getAdjacentTiles(Vector2 position, int stepCounter) { |
| 166 | + |
| 167 | + Set<Pair<Vector2,Integer>> adjacentTiles = new HashSet<>(); |
| 168 | + |
| 169 | + //Vector2 position = positionAndSteps.getLeft(); |
| 170 | + //int stepCounter = positionAndSteps.getRight() + 1; |
| 171 | + |
| 172 | + // Possible positions |
| 173 | + Vector2 left = Vector2.transform(position, Vector2.left()); |
| 174 | + Vector2 right = Vector2.transform(position, Vector2.right()); |
| 175 | + Vector2 up = Vector2.transform(position, Vector2.down()); |
| 176 | + Vector2 down = Vector2.transform(position, Vector2.up()); |
| 177 | + |
| 178 | + // Add valid movements to the adjacent set |
| 179 | + if(isValid(left)) { |
| 180 | + adjacentTiles.add(ImmutablePair.of(left, stepCounter+1)); |
| 181 | + } |
| 182 | + |
| 183 | + if(isValid(right)) { |
| 184 | + adjacentTiles.add(ImmutablePair.of(right, stepCounter+1)); |
| 185 | + } |
| 186 | + |
| 187 | + if(isValid(up)) { |
| 188 | + adjacentTiles.add(ImmutablePair.of(up, stepCounter+1)); |
| 189 | + } |
| 190 | + |
| 191 | + if(isValid(down)) { |
| 192 | + adjacentTiles.add(ImmutablePair.of(down, stepCounter+1)); |
| 193 | + } |
| 194 | + |
| 195 | + return adjacentTiles; |
| 196 | + } |
| 197 | + |
| 198 | + private boolean isValid(Vector2 position) { |
| 199 | + return isNotOutOfBounds(position) && map[position.getY()][position.getX()] != ROCK; |
| 200 | + } |
| 201 | + |
| 202 | + private boolean isValid(int row, int col) { |
| 203 | + // Empty tile that is in limits |
| 204 | + // TODO we don't want to repeat movements |
| 205 | + return isNotOutOfBounds(row, col) && map[row][col] == GARDEN_PLOT; |
| 206 | + } |
| 207 | + private boolean isNotOutOfBounds(int row, int col) { |
| 208 | + return (row >= 0 && row < rows) && (col >= 0 && col < cols); |
| 209 | + } |
| 210 | + |
| 211 | + private boolean isNotOutOfBounds(Vector2 position) { |
| 212 | + return (position.getY() >= 0 && position.getY() < rows) && (position.getX() >= 0 && position.getX() < cols); |
| 213 | + } |
| 214 | +} |
0 commit comments