Skip to content

Commit 4c1951d

Browse files
authored
Feature/Extract Metadata Retriever (#3579)
add extract metadata retriever
1 parent 76ae921 commit 4c1951d

File tree

2 files changed

+217
-0
lines changed

2 files changed

+217
-0
lines changed
Lines changed: 216 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,216 @@
1+
import { Document } from '@langchain/core/documents'
2+
import { VectorStore, VectorStoreRetriever, VectorStoreRetrieverInput } from '@langchain/core/vectorstores'
3+
import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface'
4+
import { handleEscapeCharacters } from '../../../src'
5+
import { z } from 'zod'
6+
import { convertStructuredSchemaToZod, ExtractTool } from '../../sequentialagents/commonUtils'
7+
import { ChatGoogleGenerativeAI } from '@langchain/google-genai'
8+
9+
const queryPrefix = 'query'
10+
const defaultPrompt = `Extract keywords from the query: {{${queryPrefix}}}`
11+
12+
class ExtractMetadataRetriever_Retrievers implements INode {
13+
label: string
14+
name: string
15+
version: number
16+
description: string
17+
type: string
18+
icon: string
19+
category: string
20+
badge?: string
21+
baseClasses: string[]
22+
inputs: INodeParams[]
23+
outputs: INodeOutputsValue[]
24+
25+
constructor() {
26+
this.label = 'Extract Metadata Retriever'
27+
this.name = 'extractMetadataRetriever'
28+
this.version = 1.0
29+
this.type = 'ExtractMetadataRetriever'
30+
this.icon = 'dynamicMetadataRetriever.svg'
31+
this.category = 'Retrievers'
32+
this.description = 'Extract keywords/metadata from the query and use it to filter documents'
33+
this.baseClasses = [this.type, 'BaseRetriever']
34+
this.badge = 'BETA'
35+
this.inputs = [
36+
{
37+
label: 'Vector Store',
38+
name: 'vectorStore',
39+
type: 'VectorStore'
40+
},
41+
{
42+
label: 'Chat Model',
43+
name: 'model',
44+
type: 'BaseChatModel'
45+
},
46+
{
47+
label: 'Query',
48+
name: 'query',
49+
type: 'string',
50+
description: 'Query to retrieve documents from retriever. If not specified, user question will be used',
51+
optional: true,
52+
acceptVariable: true
53+
},
54+
{
55+
label: 'Prompt',
56+
name: 'dynamicMetadataFilterRetrieverPrompt',
57+
type: 'string',
58+
description: 'Prompt to extract metadata from query',
59+
rows: 4,
60+
additionalParams: true,
61+
default: defaultPrompt
62+
},
63+
{
64+
label: 'JSON Structured Output',
65+
name: 'dynamicMetadataFilterRetrieverStructuredOutput',
66+
type: 'datagrid',
67+
description:
68+
'Instruct the model to give output in a JSON structured schema. This output will be used as the metadata filter for connected vector store',
69+
datagrid: [
70+
{ field: 'key', headerName: 'Key', editable: true },
71+
{
72+
field: 'type',
73+
headerName: 'Type',
74+
type: 'singleSelect',
75+
valueOptions: ['String', 'String Array', 'Number', 'Boolean', 'Enum'],
76+
editable: true
77+
},
78+
{ field: 'enumValues', headerName: 'Enum Values', editable: true },
79+
{ field: 'description', headerName: 'Description', flex: 1, editable: true }
80+
],
81+
optional: true,
82+
additionalParams: true
83+
},
84+
{
85+
label: 'Top K',
86+
name: 'topK',
87+
description: 'Number of top results to fetch. Default to vector store topK',
88+
placeholder: '4',
89+
type: 'number',
90+
additionalParams: true,
91+
optional: true
92+
}
93+
]
94+
this.outputs = [
95+
{
96+
label: 'Extract Metadata Retriever',
97+
name: 'retriever',
98+
baseClasses: this.baseClasses
99+
},
100+
{
101+
label: 'Document',
102+
name: 'document',
103+
description: 'Array of document objects containing metadata and pageContent',
104+
baseClasses: ['Document', 'json']
105+
},
106+
{
107+
label: 'Text',
108+
name: 'text',
109+
description: 'Concatenated string from pageContent of documents',
110+
baseClasses: ['string', 'json']
111+
}
112+
]
113+
}
114+
115+
async init(nodeData: INodeData, input: string): Promise<any> {
116+
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
117+
let llm = nodeData.inputs?.model
118+
const llmStructuredOutput = nodeData.inputs?.dynamicMetadataFilterRetrieverStructuredOutput
119+
const topK = nodeData.inputs?.topK as string
120+
const dynamicMetadataFilterRetrieverPrompt = nodeData.inputs?.dynamicMetadataFilterRetrieverPrompt as string
121+
const query = nodeData.inputs?.query as string
122+
const finalInputQuery = query ? query : input
123+
124+
const output = nodeData.outputs?.output as string
125+
126+
if (llmStructuredOutput && llmStructuredOutput !== '[]') {
127+
try {
128+
const structuredOutput = z.object(convertStructuredSchemaToZod(llmStructuredOutput))
129+
130+
if (llm instanceof ChatGoogleGenerativeAI) {
131+
const tool = new ExtractTool({
132+
schema: structuredOutput
133+
})
134+
// @ts-ignore
135+
const modelWithTool = llm.bind({
136+
tools: [tool]
137+
}) as any
138+
llm = modelWithTool
139+
} else {
140+
// @ts-ignore
141+
llm = llm.withStructuredOutput(structuredOutput)
142+
}
143+
} catch (exception) {
144+
console.error(exception)
145+
}
146+
}
147+
148+
const retriever = DynamicMetadataRetriever.fromVectorStore(vectorStore, {
149+
structuredLLM: llm,
150+
prompt: dynamicMetadataFilterRetrieverPrompt,
151+
topK: topK ? parseInt(topK, 10) : (vectorStore as any)?.k ?? 4
152+
})
153+
154+
if (output === 'retriever') return retriever
155+
else if (output === 'document') return await retriever.getRelevantDocuments(finalInputQuery)
156+
else if (output === 'text') {
157+
let finaltext = ''
158+
159+
const docs = await retriever.getRelevantDocuments(finalInputQuery)
160+
161+
for (const doc of docs) finaltext += `${doc.pageContent}\n`
162+
163+
return handleEscapeCharacters(finaltext, false)
164+
}
165+
166+
return retriever
167+
}
168+
}
169+
170+
type RetrieverInput<V extends VectorStore> = Omit<VectorStoreRetrieverInput<V>, 'k'> & {
171+
topK?: number
172+
structuredLLM: any
173+
prompt: string
174+
}
175+
176+
class DynamicMetadataRetriever<V extends VectorStore> extends VectorStoreRetriever<V> {
177+
topK = 4
178+
structuredLLM: any
179+
prompt = ''
180+
181+
constructor(input: RetrieverInput<V>) {
182+
super(input)
183+
this.topK = input.topK ?? this.topK
184+
this.structuredLLM = input.structuredLLM ?? this.structuredLLM
185+
this.prompt = input.prompt ?? this.prompt
186+
}
187+
188+
async getFilter(query: string): Promise<any> {
189+
const structuredResponse = await this.structuredLLM.invoke(this.prompt.replace(`{{${queryPrefix}}}`, query))
190+
return structuredResponse
191+
}
192+
193+
async getRelevantDocuments(query: string): Promise<Document[]> {
194+
const newFilter = await this.getFilter(query)
195+
// @ts-ignore
196+
this.filter = { ...this.filter, ...newFilter }
197+
const results = await this.vectorStore.similaritySearchWithScore(query, this.topK, this.filter)
198+
199+
const finalDocs: Document[] = []
200+
for (const result of results) {
201+
finalDocs.push(
202+
new Document({
203+
pageContent: result[0].pageContent,
204+
metadata: result[0].metadata
205+
})
206+
)
207+
}
208+
return finalDocs
209+
}
210+
211+
static fromVectorStore<V extends VectorStore>(vectorStore: V, options: Omit<RetrieverInput<V>, 'vectorStore'>) {
212+
return new this<V>({ ...options, vectorStore })
213+
}
214+
}
215+
216+
module.exports = { nodeClass: ExtractMetadataRetriever_Retrievers }
Lines changed: 1 addition & 0 deletions
Loading

0 commit comments

Comments
 (0)