@@ -72,6 +72,7 @@ class Teradata_VectorStores implements INode {
72
72
description : 'Teradata Vector Store Description' ,
73
73
placeholder : `Vector_Store_Description` ,
74
74
type : 'string' ,
75
+ additionalParams : true ,
75
76
optional : true
76
77
} ,
77
78
{
@@ -80,6 +81,7 @@ class Teradata_VectorStores implements INode {
80
81
description : 'Search Algorithm for Vector Store' ,
81
82
placeholder : 'Search_Algorithm' ,
82
83
type : 'string' ,
84
+ additionalParams : true ,
83
85
optional : true
84
86
} ,
85
87
{
@@ -88,54 +90,61 @@ class Teradata_VectorStores implements INode {
88
90
description : 'Distance Metric to be used for distance calculation between vectors' ,
89
91
placeholder : 'Distance_Metric' ,
90
92
type : 'string' ,
93
+ additionalParams : true ,
91
94
optional : true
92
95
} ,
93
96
{
94
97
label : 'Initial_Centroids_Method' ,
95
98
name : 'initialCentroidsMethod' ,
96
- description : 'Algorithm to be used for initializing the cluster centroids' ,
99
+ description : 'Algorithm to be used for initializing the cluster centroids for Search Algorithm KMEANS ' ,
97
100
placeholder : 'Initial_Centroids_Method' ,
98
101
type : 'string' ,
102
+ additionalParams : true ,
99
103
optional : true
100
104
} ,
101
105
{
102
106
label : 'Train_NumCluster' ,
103
107
name : 'trainNumCluster' ,
104
- description : 'Number of clusters to be trained' ,
108
+ description : 'Number of clusters to be trained for Search Algorithm KMEANS ' ,
105
109
placeholder : 'Train_NumCluster' ,
106
110
type : 'string' ,
111
+ additionalParams : true ,
107
112
optional : true
108
113
} ,
109
114
{
110
115
label : 'MaxIterNum' ,
111
116
name : 'maxIterNum' ,
112
- description : 'Maximum number of iterations to be run during training' ,
117
+ description : 'Maximum number of iterations to be run during training for Search Algorithm KMEANS ' ,
113
118
placeholder : 'MaxIterNum' ,
114
119
type : 'string' ,
120
+ additionalParams : true ,
115
121
optional : true
116
122
} ,
117
123
{
118
124
label : 'Stop_Threshold' ,
119
125
name : 'stopThreshold' ,
120
- description : 'Threshold value at which training should be stopped' ,
126
+ description : 'Threshold value at which training should be stopped for Search Algorithm KMEANS ' ,
121
127
placeholder : 'Stop_Threshold' ,
122
128
type : 'string' ,
129
+ additionalParams : true ,
123
130
optional : true
124
131
} ,
125
132
{
126
133
label : 'Seed' ,
127
134
name : 'seed' ,
128
- description : 'Seed value to be used for random number generation' ,
135
+ description : 'Seed value to be used for random number generation for Search Algorithm KMEANS ' ,
129
136
placeholder : 'Seed' ,
130
137
type : 'string' ,
138
+ additionalParams : true ,
131
139
optional : true
132
140
} ,
133
141
{
134
142
label : 'Num_Init' ,
135
143
name : 'numInit' ,
136
- description : 'number of times the k-means algorithm should run with different initial centroid seeds' ,
144
+ description : 'number of times the k-means algorithm should run with different initial centroid seeds for Search Algorithm KMEANS ' ,
137
145
placeholder : 'Num_Init' ,
138
146
type : 'string' ,
147
+ additionalParams : true ,
139
148
optional : true
140
149
} ,
141
150
{
@@ -144,6 +153,7 @@ class Teradata_VectorStores implements INode {
144
153
description : 'Number of top results to fetch. Default to 10' ,
145
154
placeholder : 'Top_K' ,
146
155
type : 'string' ,
156
+ additionalParams : true ,
147
157
optional : true
148
158
} ,
149
159
{
@@ -152,62 +162,70 @@ class Teradata_VectorStores implements INode {
152
162
description : 'Threshold value to consider for matching tables/views while searching' ,
153
163
placeholder : 'Search_Threshold' ,
154
164
type : 'string' ,
165
+ additionalParams : true ,
155
166
optional : true
156
167
} ,
157
168
{
158
169
label : 'Search_NumCluster' ,
159
170
name : 'searchNumCluster' ,
160
- description : 'Number of clusters to be considered while searching' ,
171
+ description : 'Number of clusters to be considered while searching for Search Algorithm KMEANS ' ,
161
172
placeholder : 'Search_NumCluster' ,
162
173
type : 'string' ,
174
+ additionalParams : true ,
163
175
optional : true
164
176
} ,
165
177
{
166
178
label : 'Ef_Search' ,
167
179
name : 'efSearch' ,
168
- description : 'Number of neighbors to be considered during search in HNSW graph' ,
180
+ description : 'Number of neighbors to be considered during search in HNSW graph for Search Algorithm HNSW ' ,
169
181
placeholder : 'Ef_Search' ,
170
182
type : 'string' ,
183
+ additionalParams : true ,
171
184
optional : true
172
185
} ,
173
186
{
174
187
label : 'Num_Layer' ,
175
188
name : 'numLayer' ,
176
- description : 'Number of neighbors to be considered during search in HNSW graph ' ,
189
+ description : 'Number of layers in the HNSW graph for Search Algorithm HNSW ' ,
177
190
placeholder : 'Num_Layer' ,
178
191
type : 'string' ,
192
+ additionalParams : true ,
179
193
optional : true
180
194
} ,
181
195
{
182
196
label : 'Ef_Construction' ,
183
197
name : 'efConstruction' ,
184
- description : 'Number of neighbors to be considered during construction of the HNSW graph' ,
198
+ description : 'Number of neighbors to be considered during construction of the HNSW graph for Search Algorithm HNSW ' ,
185
199
placeholder : 'Ef_Construction' ,
186
200
type : 'string' ,
201
+ additionalParams : true ,
187
202
optional : true
188
203
} ,
189
204
{
190
205
label : 'Num_ConnPerNode' ,
191
206
name : 'numConnPerNode' ,
192
- description : 'Number of connections per node in the HNSW graph during construction' ,
207
+ description : 'Number of connections per node in the HNSW graph during construction for Search Algorithm HNSW ' ,
193
208
placeholder : 'Num_ConnPerNode' ,
194
209
type : 'string' ,
210
+ additionalParams : true ,
195
211
optional : true
196
212
} ,
197
213
{
198
214
label : 'MaxNum_ConnPerNode' ,
199
215
name : 'maxNumConnPerNode' ,
200
- description : 'Maximum number of connections per node in the HNSW graph during construction' ,
216
+ description : 'Maximum number of connections per node in the HNSW graph during construction for Search Algorithm HNSW ' ,
201
217
placeholder : 'MaxNum_ConnPerNode' ,
202
218
type : 'string' ,
219
+ additionalParams : true ,
203
220
optional : true
204
221
} ,
205
222
{
206
223
label : 'Apply_Heuristics' ,
207
224
name : 'applyHeuristics' ,
208
- description : 'Specifies whether to apply heuristics optimizations during construction of the HNSW graph' ,
225
+ description : 'Specifies whether to apply heuristics optimizations during construction of the HNSW graph for Search Algorithm HNSW ' ,
209
226
placeholder : 'Apply_Heuristics' ,
210
227
type : 'string' ,
228
+ additionalParams : true ,
211
229
optional : true
212
230
} ,
213
231
{
@@ -216,6 +234,7 @@ class Teradata_VectorStores implements INode {
216
234
description : 'Weight to be used for reranking the search results' ,
217
235
placeholder : 'Rerank_Weight' ,
218
236
type : 'string' ,
237
+ additionalParams : true ,
219
238
optional : true
220
239
} ,
221
240
{
@@ -224,6 +243,7 @@ class Teradata_VectorStores implements INode {
224
243
description : 'Number of top similarity matches to be considered for reranking' ,
225
244
placeholder : 'Relevance_Top_K' ,
226
245
type : 'string' ,
246
+ additionalParams : true ,
227
247
optional : true
228
248
} ,
229
249
{
@@ -232,6 +252,7 @@ class Teradata_VectorStores implements INode {
232
252
description : 'Threshold value to consider for matching tables/views while reranking' ,
233
253
placeholder : 'Relevance_Search_Threshold' ,
234
254
type : 'string' ,
255
+ additionalParams : true ,
235
256
optional : true
236
257
}
237
258
]
@@ -816,4 +837,4 @@ class Teradata_VectorStores implements INode {
816
837
}
817
838
}
818
839
819
- module . exports = { nodeClass : Teradata_VectorStores }
840
+ module . exports = { nodeClass : Teradata_VectorStores }
0 commit comments