@@ -143,17 +143,16 @@ testmode!(m::AlphaDropout, mode=true) =
143
143
144
144
A [normalisation layer](https://arxiv.org/abs/1607.06450) designed to be
145
145
used with recurrent hidden states.
146
- The argument `sz ` should be an integer or a tuple of integers.
146
+ The argument `size ` should be an integer or a tuple of integers.
147
147
In the forward pass, the layer normalises the mean and standard
148
- deviation of the input, the applied the elementwise activation `λ`.
149
- The input is normalised along the first `length(sz )` dimensions
150
- for tuple `sz `, along the first dimension for integer `sz `.
151
- The input is expected to have first dimensions' size equal to `sz `.
148
+ deviation of the input, then applies the elementwise activation `λ`.
149
+ The input is normalised along the first `length(size )` dimensions
150
+ for tuple `size `, and along the first dimension for integer `size `.
151
+ The input is expected to have first dimensions' size equal to `size `.
152
152
153
- If `affine=true` also applies a learnable shift and rescaling
153
+ If `affine=true`, it also applies a learnable shift and rescaling
154
154
using the [`Scale`](@ref) layer.
155
155
156
-
157
156
See also [`BatchNorm`](@ref), [`InstanceNorm`](@ref), [`GroupNorm`](@ref), and [`normalise`](@ref).
158
157
"""
159
158
struct LayerNorm{F,D,T,N}
0 commit comments