|
1 | 1 | @test Flux.AMDGPU_LOADED[]
|
2 | 2 |
|
3 |
| -# @testset "Basic GPU movement" begin |
4 |
| -# @test Flux.amd(rand(Float64, 16)) isa ROCArray{Float32, 1} |
5 |
| -# @test Flux.amd(rand(Float64, 16, 16)) isa ROCArray{Float32, 2} |
6 |
| -# @test Flux.amd(rand(Float32, 16, 16)) isa ROCArray{Float32, 2} |
7 |
| -# @test Flux.amd(rand(Float16, 16, 16, 16)) isa ROCArray{Float16, 3} |
| 3 | +@testset "Basic GPU movement" begin |
| 4 | + @test Flux.amd(rand(Float64, 16)) isa ROCArray{Float32, 1} |
| 5 | + @test Flux.amd(rand(Float64, 16, 16)) isa ROCArray{Float32, 2} |
| 6 | + @test Flux.amd(rand(Float32, 16, 16)) isa ROCArray{Float32, 2} |
| 7 | + @test Flux.amd(rand(Float16, 16, 16, 16)) isa ROCArray{Float16, 3} |
8 | 8 |
|
9 |
| -# @test gradient(x -> sum(Flux.amd(x)), rand(Float32, 4, 4)) isa Tuple |
10 |
| -# @test gradient(x -> sum(cpu(x)), AMDGPU.rand(Float32, 4, 4)) isa Tuple |
11 |
| -# end |
| 9 | + @test gradient(x -> sum(Flux.amd(x)), rand(Float32, 4, 4)) isa Tuple |
| 10 | + @test gradient(x -> sum(cpu(x)), AMDGPU.rand(Float32, 4, 4)) isa Tuple |
| 11 | +end |
12 | 12 |
|
13 |
| -# @testset "Dense no bias" begin |
14 |
| -# m = Dense(3 => 4; bias=false) |> Flux.amd |
15 |
| -# x = zeros(Float32, 3, 4) |> Flux.amd |
16 |
| -# @test sum(m(x)) ≈ 0f0 |
17 |
| -# gs = gradient(m -> sum(m(x)), m) |
18 |
| -# @test isnothing(gs[1].bias) |
19 |
| -# end |
| 13 | +@testset "Dense no bias" begin |
| 14 | + m = Dense(3 => 4; bias=false) |> Flux.amd |
| 15 | + x = zeros(Float32, 3, 4) |> Flux.amd |
| 16 | + @test sum(m(x)) ≈ 0f0 |
| 17 | + gs = gradient(m -> sum(m(x)), m) |
| 18 | + @test isnothing(gs[1].bias) |
| 19 | +end |
20 | 20 |
|
21 |
| -# @testset "Chain of Dense layers" begin |
22 |
| -# m = Chain(Dense(10, 5, tanh), Dense(5, 2), softmax) |> f32 |
23 |
| -# x = rand(Float32, 10, 10) |
24 |
| -# amdgputest(m, x) |
25 |
| -# end |
| 21 | +@testset "Chain of Dense layers" begin |
| 22 | + m = Chain(Dense(10, 5, tanh), Dense(5, 2), softmax) |> f32 |
| 23 | + x = rand(Float32, 10, 10) |
| 24 | + amdgputest(m, x) |
| 25 | +end |
26 | 26 |
|
27 | 27 | @testset "Convolution" begin
|
28 |
| - m = Conv((2, 2), 1 => 1) |> f32 |
29 |
| - x = rand(Float32, 4, 4, 1, 1) |
30 |
| - amdgputest(m, x; atol=1f-3, checkgrad=false) |
| 28 | + for nd in (1, 2, 3) |
| 29 | + m = Conv(tuple(fill(2, nd)...), 3 => 4) |> f32 |
| 30 | + x = rand(Float32, fill(10, nd)..., 3, 5) |
31 | 31 |
|
32 |
| - # Gradients are flipped as well. |
33 |
| - md, xd = Flux.amd.((m, x)) |
34 |
| - gs = gradient(m -> sum(m(x)), m) |
35 |
| - gsd = gradient(m -> sum(m(xd)), md) |
36 |
| - @test gs[1].weight[end:-1:1, end:-1:1, :, :] ≈ Array(gsd[1].weight) atol=1f-3 |
| 32 | + # Ensure outputs are the same. |
| 33 | + amdgputest(m, x; atol=1f-3, checkgrad=false) |
| 34 | + |
| 35 | + # Gradients are flipped as well. |
| 36 | + md, xd = Flux.amd.((m, x)) |
| 37 | + gs = gradient(m -> sum(m(x)), m) |
| 38 | + gsd = gradient(m -> sum(m(xd)), md) |
| 39 | + |
| 40 | + dims = ntuple(i -> i, ndims(m.weight) - 2) |
| 41 | + @test reverse(gs[1].weight; dims) ≈ Array(gsd[1].weight) atol=1f-2 |
| 42 | + |
| 43 | + # Movement back to CPU flips weights back. |
| 44 | + mh = Flux.cpu(md) |
| 45 | + @test m.weight ≈ mh.weight |
| 46 | + end |
37 | 47 | end
|
38 | 48 |
|
39 |
| -# @testset "Cross-correlation" begin |
40 |
| -# m = CrossCor((2, 2), 3 => 4) |> f32 |
41 |
| -# x = rand(Float32, 10, 10, 3, 2) |
42 |
| -# amdgputest(m, x; atol=1f-3) |
43 |
| -# end |
| 49 | +@testset "Cross-correlation" begin |
| 50 | + m = CrossCor((2, 2), 3 => 4) |> f32 |
| 51 | + x = rand(Float32, 10, 10, 3, 2) |
| 52 | + amdgputest(m, x; atol=1f-3) |
| 53 | +end |
44 | 54 |
|
45 |
| -# @testset "Restructure" begin |
46 |
| -# m = Dense(1, 1) |> Flux.amd |
47 |
| -# θ, m̂ = Flux.destructure(m) |
48 |
| -# foo(x) = sum(re(p)(x)) |
| 55 | +@testset "Restructure" begin |
| 56 | + m = Dense(1, 1) |> Flux.amd |
| 57 | + θ, m̂ = Flux.destructure(m) |
| 58 | + foo(x) = sum(re(p)(x)) |
49 | 59 |
|
50 |
| -# x = Flux.amd(rand(Float32, 1)) |
51 |
| -# @test gradient(x -> sum(m̂(θ)(x)), x)[1] isa ROCArray{Float32} |
52 |
| -# end |
| 60 | + x = Flux.amd(rand(Float32, 1)) |
| 61 | + @test gradient(x -> sum(m̂(θ)(x)), x)[1] isa ROCArray{Float32} |
| 62 | +end |
53 | 63 |
|
54 |
| -# @testset "Flux.amd(x) on structured arrays" begin |
55 |
| -# g1 = Zygote.OneElement(1, (2, 3), axes(ones(4, 5))) |
56 |
| -# @test Flux.amd(g1) isa ROCMatrix{Int64} |
57 |
| -# g2 = Zygote.Fill(1f0, 2) |
58 |
| -# @test Flux.amd(g2) isa ROCArray{Float32, 1} |
59 |
| -# g3 = transpose(Float32[1 2; 3 4]) |
60 |
| -# @test parent(Flux.amd(g3)) isa ROCMatrix{Float32} |
61 |
| -# end |
| 64 | +@testset "Flux.amd(x) on structured arrays" begin |
| 65 | + g1 = Zygote.OneElement(1, (2, 3), axes(ones(4, 5))) |
| 66 | + @test Flux.amd(g1) isa ROCMatrix{Int64} |
| 67 | + g2 = Zygote.Fill(1f0, 2) |
| 68 | + @test Flux.amd(g2) isa ROCArray{Float32, 1} |
| 69 | + g3 = transpose(Float32[1 2; 3 4]) |
| 70 | + @test parent(Flux.amd(g3)) isa ROCMatrix{Float32} |
| 71 | +end |
62 | 72 |
|
63 |
| -# @testset "Flux.onecold gpu" begin |
64 |
| -# y = Flux.onehotbatch(ones(3), 1:10) |> Flux.amd |
65 |
| -# l = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] |
66 |
| -# @test Flux.onecold(y) isa ROCArray |
67 |
| -# @test y[3, :] isa ROCArray |
68 |
| -# @test Flux.onecold(y, l) == ['a', 'a', 'a'] |
69 |
| -# end |
| 73 | +@testset "Flux.onecold gpu" begin |
| 74 | + y = Flux.onehotbatch(ones(3), 1:10) |> Flux.amd |
| 75 | + l = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] |
| 76 | + @test Flux.onecold(y) isa ROCArray |
| 77 | + @test y[3, :] isa ROCArray |
| 78 | + @test Flux.onecold(y, l) == ['a', 'a', 'a'] |
| 79 | +end |
70 | 80 |
|
71 | 81 | # FIXME scalar indexing. Needs NNlib.scatter?
|
72 | 82 | # @testset "Flux.onehot gpu" begin
|
|
0 commit comments