@@ -20,7 +20,7 @@ See the docstring for `conv_direct!()` for more on the optional parameters.
20
20
"""
21
21
function depthwiseconv_direct! (y:: AbstractArray{yT,5} , x:: AbstractArray{xT,5} ,
22
22
w:: AbstractArray{wT,5} , cdims:: DepthwiseConvDims ;
23
- alpha:: yT = yT (1 ), beta = false ) where {yT, xT, wT}
23
+ alpha:: yT = yT (1 ), beta= false ) where {yT, xT, wT}
24
24
check_dims (size (x), size (w), size (y), cdims)
25
25
26
26
width, height, depth = input_size (cdims)
@@ -135,7 +135,7 @@ for each batch and channel independently.
135
135
function ∇depthwiseconv_data_direct! (
136
136
dx:: AbstractArray{xT,5} , dy:: AbstractArray{yT,5} ,
137
137
w:: AbstractArray{wT,5} , cdims:: DepthwiseConvDims ;
138
- alpha:: xT = xT (1 ), beta:: xT = xT ( 0 ) ) where {xT, yT, wT}
138
+ alpha:: xT = xT (1 ), beta= false ) where {xT, yT, wT}
139
139
# We do a separate convolution for each channel in x
140
140
@inbounds for cidx in 1 : channels_in (cdims)
141
141
# For this batch and in-channel, we have a normal transposed convolution
@@ -168,7 +168,7 @@ Calculate the gradient imposed upon `w` in the depthwise convolution `y = x * w`
168
168
function ∇depthwiseconv_filter_direct! (
169
169
dw:: AbstractArray{wT,5} , x:: AbstractArray{xT,5} ,
170
170
dy:: AbstractArray{yT,5} , cdims:: DepthwiseConvDims ;
171
- alpha:: wT = wT (1 ),beta:: wT = wT ( 0 ) ) where {xT, yT, wT}
171
+ alpha:: wT = wT (1 ),beta= false ) where {xT, yT, wT}
172
172
# We do a separate convolution for each channel in x
173
173
@inbounds for cidx in 1 : channels_in (cdims)
174
174
# For this batch and in-channel, we have a normal transposed convolution
0 commit comments