@@ -47,9 +47,9 @@ axiom pred_freshness:
47
47
axiom EV_abstraction {a b: EVar} (alpha tau: Pattern) (phi psi: Pattern a b):
48
48
$ is_atom_sort alpha $ >
49
49
$ is_nominal_sort tau $ >
50
- $ is_of_sort phi alpha $ >
51
- $ is_of_sort psi tau $ >
52
- $ s_forall alpha a (s_forall alpha b ((swap a b (abstraction phi psi)) == abstraction (swap a b phi) (swap a b psi))) $;
50
+ $ is_of_sort phi alpha - >
51
+ is_of_sort psi tau - >
52
+ s_forall alpha a (s_forall alpha b ((swap a b (abstraction phi psi)) == abstraction (swap a b phi) (swap a b psi))) $;
53
53
54
54
55
55
axiom EV_pred (alpha tau: Pattern):
@@ -59,60 +59,60 @@ axiom EV_pred (alpha tau: Pattern):
59
59
axiom S1 (alpha tau: Pattern) {a: EVar} (phi: Pattern a):
60
60
$ is_atom_sort alpha $ >
61
61
$ is_nominal_sort tau $ >
62
- $ is_atom a alpha $ >
63
- $ is_of_sort phi tau $ >
64
- $ (moot_swap a phi) == phi $;
62
+ $ is_atom a alpha - >
63
+ is_of_sort phi tau - >
64
+ (moot_swap a phi) == phi $;
65
65
axiom S2 (alpha tau: Pattern) {a b: EVar} (phi: Pattern a b):
66
66
$ is_atom_sort alpha $ >
67
67
$ is_nominal_sort tau $ >
68
- $ is_atom a alpha $ >
69
- $ is_atom b alpha $ >
70
- $ is_of_sort phi tau $ >
71
- $ (swap a b (swap a b phi)) == phi $;
68
+ $ is_atom a alpha - >
69
+ is_atom b alpha - >
70
+ is_of_sort phi tau - >
71
+ (swap a b (swap a b phi)) == phi $;
72
72
axiom S3 (alpha: Pattern) {a b: EVar}:
73
73
$ is_atom_sort alpha $ >
74
- $ is_atom a alpha $ >
75
- $ is_atom b alpha $ >
76
- $ (swap a b (eVar a)) == eVar b $;
74
+ $ is_atom a alpha - >
75
+ is_atom b alpha - >
76
+ (swap a b (eVar a)) == eVar b $;
77
77
axiom S4 (alpha tau: Pattern) {a b: EVar} (phi: Pattern a b):
78
78
$ is_atom_sort alpha $ >
79
79
$ is_nominal_sort tau $ >
80
- $ is_atom a alpha $ >
81
- $ is_atom b alpha $ >
82
- $ is_of_sort phi tau $ >
83
- $ (swap a b phi) == (swap b a phi) $;
80
+ $ is_atom a alpha - >
81
+ is_atom b alpha - >
82
+ is_of_sort phi tau - >
83
+ (swap a b phi) == (swap b a phi) $;
84
84
axiom F1 (alpha tau: Pattern) {a b: EVar} (phi: Pattern a b):
85
85
$ is_atom_sort alpha $ >
86
86
$ is_nominal_sort tau $ >
87
- $ is_atom a alpha $ >
88
- $ is_atom b alpha $ >
89
- $ is_of_sort phi tau $ >
90
- $ (phi C= freshness a) /\ (phi C= freshness b) -> ((swap a b phi) == phi) $;
87
+ $ is_atom a alpha - >
88
+ is_atom b alpha - >
89
+ is_of_sort phi tau - >
90
+ (phi C= freshness a) /\ (phi C= freshness b) -> ((swap a b phi) == phi) $;
91
91
axiom F2 (alpha: Pattern) {a b: EVar}:
92
92
$ is_atom_sort alpha $ >
93
- $ is_atom a alpha $ >
94
- $ is_atom b alpha $ >
95
- $ (b in freshness a) <-> (eVar a != eVar b) $;
93
+ $ is_atom a alpha - >
94
+ is_atom b alpha - >
95
+ (b in freshness a) <-> (eVar a != eVar b) $;
96
96
axiom F3 (alpha1 alpha2: Pattern) {a b: EVar}:
97
97
$ is_atom_sort alpha1 $ >
98
98
$ is_atom_sort alpha2 $ >
99
- $ is_atom a alpha1 $ >
100
- $ is_atom b alpha2 $ >
101
- $ alpha1 != alpha2 $ >
102
- $ b in freshness a $;
99
+ $ is_atom a alpha1 - >
100
+ is_atom b alpha2 - >
101
+ alpha1 != alpha2 - >
102
+ b in freshness a $;
103
103
axiom F4 (alpha tau phi: Pattern) {a: EVar}:
104
104
$ is_atom_sort alpha $ >
105
105
$ is_nominal_sort tau $ >
106
- $ is_of_sort phi tau $ >
107
- $ s_exists alpha a (phi C= freshness a) $;
106
+ $ is_of_sort phi tau - >
107
+ s_exists alpha a (phi C= freshness a) $;
108
108
axiom A1 (alpha tau: Pattern) {a b: EVar} (phi rho: Pattern a b):
109
109
$ is_atom_sort alpha $ >
110
110
$ is_nominal_sort tau $ >
111
- $ is_atom a alpha $ >
112
- $ is_atom b alpha $ >
113
- $ is_of_sort phi tau $ >
114
- $ is_of_sort rho tau $ >
115
- $ ((abstraction (eVar a) phi) == (abstraction (eVar b) rho)) <->
111
+ $ is_atom a alpha - >
112
+ is_atom b alpha - >
113
+ is_of_sort phi tau - >
114
+ is_of_sort rho tau - >
115
+ ((abstraction (eVar a) phi) == (abstraction (eVar b) rho)) <->
116
116
((eVar a == eVar b) /\ (phi == rho)) \/
117
117
((rho C= freshness a) /\ ((swap a b phi) == rho)) $;
118
118
axiom A2 (alpha tau: Pattern) {x a y: EVar}:
0 commit comments