@@ -88,23 +88,24 @@ axiom F1 (alpha tau: Pattern) {a b: EVar} (phi: Pattern a b):
88
88
(is_atom b alpha) ->
89
89
(is_of_sort phi tau) ->
90
90
((phi C= freshness a) /\ (phi C= freshness b) -> ((swap a b phi) == phi)) $;
91
- axiom F2 (alpha: Pattern) {a b: EVar}:
92
- $ is_atom_sort alpha $ >
93
- $ (is_atom a alpha) ->
94
- (is_atom b alpha) ->
95
- ((b in freshness a) <-> (eVar a != eVar b)) $;
96
- axiom F3 (alpha1 alpha2: Pattern) {a b: EVar}:
91
+ axiom F23 (alpha1 alpha2: Pattern) {a b: EVar}:
97
92
$ is_atom_sort alpha1 $ >
98
93
$ is_atom_sort alpha2 $ >
99
94
$ (is_atom a alpha1) ->
100
95
(is_atom b alpha2) ->
101
- (alpha1 != alpha2) ->
102
96
(b in freshness a) $;
103
97
axiom F4 (alpha tau phi: Pattern) {a: EVar}:
104
98
$ is_atom_sort alpha $ >
105
99
$ is_nominal_sort tau $ >
106
100
$ (is_of_sort phi tau) ->
107
101
(s_exists alpha a (phi C= freshness a)) $;
102
+ axiom A1_same (alpha tau: Pattern) {a: EVar} (phi rho: Pattern a):
103
+ $ is_atom_sort alpha $ >
104
+ $ is_nominal_sort tau $ >
105
+ $ (is_atom a alpha) ->
106
+ (is_of_sort phi tau) ->
107
+ (is_of_sort rho tau) ->
108
+ (((abstraction (eVar a) phi) == (abstraction (eVar a) rho)) <-> (phi == rho)) $;
108
109
axiom A1 (alpha tau: Pattern) {a b: EVar} (phi rho: Pattern a b):
109
110
$ is_atom_sort alpha $ >
110
111
$ is_nominal_sort tau $ >
@@ -113,7 +114,6 @@ axiom A1 (alpha tau: Pattern) {a b: EVar} (phi rho: Pattern a b):
113
114
(is_of_sort phi tau) ->
114
115
(is_of_sort rho tau) ->
115
116
(((abstraction (eVar a) phi) == (abstraction (eVar b) rho)) <->
116
- ((eVar a == eVar b) /\ (phi == rho)) \/
117
117
((rho C= freshness a) /\ ((swap a b phi) == rho))) $;
118
118
axiom A2 (alpha tau: Pattern) {x a y: EVar}:
119
119
$ is_atom_sort alpha $ >
0 commit comments