@@ -56,17 +56,18 @@ def to_label_decomposed_graph(graph, automata_size, initial_graph_size):
5656 alloc_r << alloc .T
5757 print ("Boolean matrix for alloc_r nvals: " , alloc_r .nvals )
5858
59- print ("mask start" )
60- mask_v = Vector (BOOL , graph .ncols , name = "mask_vector" )
61- mask_v (op .lor ) << alloc .reduce_columnwise ("lor" )
62- mask_v (op .lor ) << alloc .reduce_rowwise ("lor" )
59+ # print("mask start")
60+ # mask_v = Vector(BOOL, graph.ncols, name = "mask_vector")
61+ # mask_v(op.lor) << alloc.reduce_columnwise("lor")
62+ # mask_v(op.lor) << alloc.reduce_rowwise("lor")
6363
64- print ("entrypoints start" )
64+ # print("entrypoints start")
6565
6666 #entrypoints = Vector(bool,graph.nrows, name="entrypoints")
6767 #entrypoints << graph.reduce_columnwise(op.lor)
6868 #mask_v(op.lor) << Vector.from_coo(list(set(range(0,graph.nrows)).difference(entrypoints.to_coo(values=False)[0])), values=True, dtype = BOOL)
69- mask_v (op .lor ) << Vector .from_coo ([i * automata_size for i in range (0 , initial_graph_size )], values = True , dtype = BOOL , size = graph .ncols )
69+
70+ #mask_v(op.lor) << Vector.from_coo([i * automata_size for i in range(0, initial_graph_size)], values=True, dtype = BOOL, size= graph.ncols)
7071
7172 load_i = Matrix (UINT64 , graph .ncols , graph .nrows , name = "load_i_after_intersection" )
7273 load_i << graph .select (graphblas .select .select_load ).apply (graphblas .unary .decode_load )
@@ -76,11 +77,11 @@ def to_label_decomposed_graph(graph, automata_size, initial_graph_size):
7677 store_i << graph .select (graphblas .select .select_store ).apply (graphblas .unary .decode_store )
7778 print ("Matrix for store_i nvals: " , store_i .nvals )
7879
79- mask_v (op .lor ) << load_i .reduce_columnwise ("lor" )
80- mask_v (op .lor ) << load_i .reduce_rowwise ("lor" )
80+ # mask_v(op.lor) << load_i.reduce_columnwise("lor")
81+ # mask_v(op.lor) << load_i.reduce_rowwise("lor")
8182
82- mask_v (op .lor ) << store_i .reduce_columnwise ("lor" )
83- mask_v (op .lor ) << store_i .reduce_rowwise ("lor" )
83+ # mask_v(op.lor) << store_i.reduce_columnwise("lor")
84+ # mask_v(op.lor) << store_i.reduce_rowwise("lor")
8485
8586 store_block_count = store_i .reduce_scalar ("max" ).get (0 ) + 1
8687 load_block_count = load_i .reduce_scalar ("max" ).get (0 ) + 1
@@ -108,14 +109,14 @@ def to_label_decomposed_graph(graph, automata_size, initial_graph_size):
108109
109110
110111
111- assign_mask = mask_v .diag (name = "assign_mask" )
112+ # assign_mask = mask_v.diag(name = "assign_mask")
112113
113114 assign = Matrix (BOOL , graph .ncols , graph .nrows , name = "assign_after_intersection" )
114115 assign << graph .select (graphblas .select .select_assign )
115116 print ("Boolean matrix for assign nvals: " , assign .nvals )
116117
117118
118- assign << transitive_reduction (assign , assign_mask )
119+ # assign << transitive_reduction(assign, assign_mask)
119120
120121 #assign_res = Matrix(BOOL, graph.ncols, graph.nrows, name = "assign_after_transitive_reduction")
121122 #assign_1 = Matrix.mxm(assign_mask, assign, "land_lor")
0 commit comments