|
3 | 3 | """ |
4 | 4 | Sample script for plotting maps of long-term data assimilation diagnostics. |
5 | 5 | Requires saved files with monthly sums (see Get_ObsFcstAna_stat.py). |
| 6 | +Stats of *normalized* OmFs are approximated! |
6 | 7 | """ |
7 | 8 |
|
8 | 9 | import sys; sys.path.append('../../shared/python/') |
@@ -42,18 +43,18 @@ def plot_OmF_maps(postproc_obj, stats, fig_path='./'): |
42 | 43 | OmA_stdv = np.sqrt(stats['obs_variance'] + stats['ana_variance'] - \ |
43 | 44 | 2 * (stats['oxa_mean'] - stats['obs_mean']*stats['ana_mean'])) |
44 | 45 |
|
45 | | - # *************************************************************************************** |
46 | | - # The time series mean and std-dev of the *normalized* OmF computed here are APPROXIMATE! |
47 | | - # *************************************************************************************** |
| 46 | + # ***************************************************************************************** |
| 47 | + # The time series mean and std-dev of the *normalized* OmF computed here are APPROXIMATED! |
| 48 | + # ***************************************************************************************** |
48 | 49 | # Here, we first compute the stats of the OmF time series and then normalize using |
49 | 50 | # the time-avg "obsvar" and "fcstvar" values. |
50 | 51 | # Since "fcstvar" changes with time, the OmF values should be normalized at each time |
51 | 52 | # step (as in the older matlab scripts), and then the time series stats can be computed. |
52 | 53 | # To compute the exact stats with this python package, the sum and sum-of-squares of |
53 | 54 | # the normalized OmF values would need to be added into the sums files. |
54 | 55 | # |
55 | | - OmF_norm_mean = OmF_mean / np.sqrt(stats['obsvar_mean'] + stats['fcstvar_mean']) # APPROXIMATE stat! |
56 | | - OmF_norm_stdv = np.sqrt(OmF_stdv**2 / (stats['obsvar_mean'] + stats['fcstvar_mean']) ) # APPROXIMATE stat! |
| 56 | + OmF_norm_mean = OmF_mean / np.sqrt(stats['obsvar_mean'] + stats['fcstvar_mean']) # APPROXIMATED stat! |
| 57 | + OmF_norm_stdv = np.sqrt(OmF_stdv**2 / (stats['obsvar_mean'] + stats['fcstvar_mean']) ) # APPROXIMATED stat! |
57 | 58 |
|
58 | 59 | # Mask out data points with insufficent observations using the Nmin threshold |
59 | 60 | # Do NOT apply to N_data |
|
0 commit comments