Skip to content

Commit 3acc2a9

Browse files
committed
additional tweak to comments on normalized OmF stats (Plots_stats_maps.py)
1 parent 4b65032 commit 3acc2a9

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

GEOSldas_App/util/postproc/ObsFcstAna_stats/Plot_stats_maps.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@
33
"""
44
Sample script for plotting maps of long-term data assimilation diagnostics.
55
Requires saved files with monthly sums (see Get_ObsFcstAna_stat.py).
6+
Stats of *normalized* OmFs are approximated!
67
"""
78

89
import sys; sys.path.append('../../shared/python/')
@@ -42,18 +43,18 @@ def plot_OmF_maps(postproc_obj, stats, fig_path='./'):
4243
OmA_stdv = np.sqrt(stats['obs_variance'] + stats['ana_variance'] - \
4344
2 * (stats['oxa_mean'] - stats['obs_mean']*stats['ana_mean']))
4445

45-
# ***************************************************************************************
46-
# The time series mean and std-dev of the *normalized* OmF computed here are APPROXIMATE!
47-
# ***************************************************************************************
46+
# *****************************************************************************************
47+
# The time series mean and std-dev of the *normalized* OmF computed here are APPROXIMATED!
48+
# *****************************************************************************************
4849
# Here, we first compute the stats of the OmF time series and then normalize using
4950
# the time-avg "obsvar" and "fcstvar" values.
5051
# Since "fcstvar" changes with time, the OmF values should be normalized at each time
5152
# step (as in the older matlab scripts), and then the time series stats can be computed.
5253
# To compute the exact stats with this python package, the sum and sum-of-squares of
5354
# the normalized OmF values would need to be added into the sums files.
5455
#
55-
OmF_norm_mean = OmF_mean / np.sqrt(stats['obsvar_mean'] + stats['fcstvar_mean']) # APPROXIMATE stat!
56-
OmF_norm_stdv = np.sqrt(OmF_stdv**2 / (stats['obsvar_mean'] + stats['fcstvar_mean']) ) # APPROXIMATE stat!
56+
OmF_norm_mean = OmF_mean / np.sqrt(stats['obsvar_mean'] + stats['fcstvar_mean']) # APPROXIMATED stat!
57+
OmF_norm_stdv = np.sqrt(OmF_stdv**2 / (stats['obsvar_mean'] + stats['fcstvar_mean']) ) # APPROXIMATED stat!
5758

5859
# Mask out data points with insufficent observations using the Nmin threshold
5960
# Do NOT apply to N_data

0 commit comments

Comments
 (0)