Skip to content

Commit fc34446

Browse files
authored
Create README.md
1 parent 8b1b83a commit fc34446

File tree

1 file changed

+112
-0
lines changed

1 file changed

+112
-0
lines changed

data/README.md

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
# ARGOS Dataset Directory
2+
3+
This directory contains all synthetic datasets used for experiments, ablation
4+
studies, and reproducibility in the **ARGOS (Adaptive Recursive Gradient
5+
Optimization System)** project.
6+
7+
All datasets are fully synthetic, generated using the ARGOS
8+
hotel-environment simulator, and are safe for open distribution under the MIT
9+
License.
10+
11+
---
12+
13+
## 1. `synthetic_long_horizon.csv`
14+
**Long-horizon 365-day simulation** of a single hotel environment.
15+
16+
**Columns:**
17+
- `day` – simulation day index
18+
- `occupancy` – normalized occupancy rate (0–1)
19+
- `fatigue` – staff fatigue index
20+
- `staff_level` – staffing adequacy (0–1)
21+
- `revpar` – revenue per available room
22+
23+
**Purpose:**
24+
Used for stability and convergence evaluations in long-horizon experiments.
25+
26+
---
27+
28+
## 2. `scenario_high_volatility.csv`
29+
High-variance demand and noise scenario (180 days).
30+
31+
**Columns:**
32+
- `day`
33+
- `occupancy` (high volatility)
34+
- `fatigue` (high volatility)
35+
- `revpar` (large fluctuations)
36+
37+
**Purpose:**
38+
Tests ARGOS under extreme market volatility and non-stationary dynamics.
39+
40+
---
41+
42+
## 3. `scenario_staff_shortage.csv`
43+
Staff-shortage stress-test scenario (180 days).
44+
45+
**Columns:**
46+
- `day`
47+
- `occupancy`
48+
- `fatigue` (elevated fatigue)
49+
- `staff_level` (reduced staffing)
50+
- `revpar`
51+
52+
**Purpose:**
53+
Evaluates lexicographic Tier-1 feasibility and fatigue control under constrained
54+
resource conditions.
55+
56+
---
57+
58+
## 4. `hyperparam_sweep_results.csv`
59+
Synthetic results from sweeping ARGOS hyperparameters.
60+
61+
**Columns:**
62+
- `alpha` – step size
63+
- `cag_weight` – contour-filter weight
64+
- `avg_revpar`
65+
- `violations_tier1`
66+
- `fatigue_mean`
67+
68+
**Purpose:**
69+
Supports Appendix E (Hyperparameter Sensitivity Analysis).
70+
71+
---
72+
73+
## 5. `qubo_example_matrix.csv`
74+
An 8×8 example QUBO matrix.
75+
76+
**Purpose:**
77+
Demonstrates the binary-optimization interface used for future QUBO/quantum
78+
extensions.
79+
80+
---
81+
82+
## 6. `multiunit_traffic_sim.csv`
83+
Synthetic booking-traffic simulation for **5 hotel units** over 100 days.
84+
85+
**Columns:**
86+
- `day`
87+
- `hotel_0_traffic`
88+
- `hotel_1_traffic`
89+
- `hotel_2_traffic`
90+
- `hotel_3_traffic`
91+
- `hotel_4_traffic`
92+
93+
**Purpose:**
94+
Used in multi-unit scaling experiments and Appendix D (Parallelization + Ablation).
95+
96+
---
97+
98+
## Data Origin and Ethics
99+
100+
- All datasets are **fully synthetic**
101+
- No personal or operational real hotel data is included
102+
- Generated only for academic reproducibility and benchmarking
103+
104+
---
105+
106+
## How to Load the Data (Python)
107+
108+
```python
109+
import pandas as pd
110+
111+
df = pd.read_csv("data/synthetic_long_horizon.csv")
112+
print(df.head())

0 commit comments

Comments
 (0)