|
| 1 | +# ARGOS Dataset Directory |
| 2 | + |
| 3 | +This directory contains all synthetic datasets used for experiments, ablation |
| 4 | +studies, and reproducibility in the **ARGOS (Adaptive Recursive Gradient |
| 5 | +Optimization System)** project. |
| 6 | + |
| 7 | +All datasets are fully synthetic, generated using the ARGOS |
| 8 | +hotel-environment simulator, and are safe for open distribution under the MIT |
| 9 | +License. |
| 10 | + |
| 11 | +--- |
| 12 | + |
| 13 | +## 1. `synthetic_long_horizon.csv` |
| 14 | +**Long-horizon 365-day simulation** of a single hotel environment. |
| 15 | + |
| 16 | +**Columns:** |
| 17 | +- `day` – simulation day index |
| 18 | +- `occupancy` – normalized occupancy rate (0–1) |
| 19 | +- `fatigue` – staff fatigue index |
| 20 | +- `staff_level` – staffing adequacy (0–1) |
| 21 | +- `revpar` – revenue per available room |
| 22 | + |
| 23 | +**Purpose:** |
| 24 | +Used for stability and convergence evaluations in long-horizon experiments. |
| 25 | + |
| 26 | +--- |
| 27 | + |
| 28 | +## 2. `scenario_high_volatility.csv` |
| 29 | +High-variance demand and noise scenario (180 days). |
| 30 | + |
| 31 | +**Columns:** |
| 32 | +- `day` |
| 33 | +- `occupancy` (high volatility) |
| 34 | +- `fatigue` (high volatility) |
| 35 | +- `revpar` (large fluctuations) |
| 36 | + |
| 37 | +**Purpose:** |
| 38 | +Tests ARGOS under extreme market volatility and non-stationary dynamics. |
| 39 | + |
| 40 | +--- |
| 41 | + |
| 42 | +## 3. `scenario_staff_shortage.csv` |
| 43 | +Staff-shortage stress-test scenario (180 days). |
| 44 | + |
| 45 | +**Columns:** |
| 46 | +- `day` |
| 47 | +- `occupancy` |
| 48 | +- `fatigue` (elevated fatigue) |
| 49 | +- `staff_level` (reduced staffing) |
| 50 | +- `revpar` |
| 51 | + |
| 52 | +**Purpose:** |
| 53 | +Evaluates lexicographic Tier-1 feasibility and fatigue control under constrained |
| 54 | +resource conditions. |
| 55 | + |
| 56 | +--- |
| 57 | + |
| 58 | +## 4. `hyperparam_sweep_results.csv` |
| 59 | +Synthetic results from sweeping ARGOS hyperparameters. |
| 60 | + |
| 61 | +**Columns:** |
| 62 | +- `alpha` – step size |
| 63 | +- `cag_weight` – contour-filter weight |
| 64 | +- `avg_revpar` |
| 65 | +- `violations_tier1` |
| 66 | +- `fatigue_mean` |
| 67 | + |
| 68 | +**Purpose:** |
| 69 | +Supports Appendix E (Hyperparameter Sensitivity Analysis). |
| 70 | + |
| 71 | +--- |
| 72 | + |
| 73 | +## 5. `qubo_example_matrix.csv` |
| 74 | +An 8×8 example QUBO matrix. |
| 75 | + |
| 76 | +**Purpose:** |
| 77 | +Demonstrates the binary-optimization interface used for future QUBO/quantum |
| 78 | +extensions. |
| 79 | + |
| 80 | +--- |
| 81 | + |
| 82 | +## 6. `multiunit_traffic_sim.csv` |
| 83 | +Synthetic booking-traffic simulation for **5 hotel units** over 100 days. |
| 84 | + |
| 85 | +**Columns:** |
| 86 | +- `day` |
| 87 | +- `hotel_0_traffic` |
| 88 | +- `hotel_1_traffic` |
| 89 | +- `hotel_2_traffic` |
| 90 | +- `hotel_3_traffic` |
| 91 | +- `hotel_4_traffic` |
| 92 | + |
| 93 | +**Purpose:** |
| 94 | +Used in multi-unit scaling experiments and Appendix D (Parallelization + Ablation). |
| 95 | + |
| 96 | +--- |
| 97 | + |
| 98 | +## Data Origin and Ethics |
| 99 | + |
| 100 | +- All datasets are **fully synthetic** |
| 101 | +- No personal or operational real hotel data is included |
| 102 | +- Generated only for academic reproducibility and benchmarking |
| 103 | + |
| 104 | +--- |
| 105 | + |
| 106 | +## How to Load the Data (Python) |
| 107 | + |
| 108 | +```python |
| 109 | +import pandas as pd |
| 110 | + |
| 111 | +df = pd.read_csv("data/synthetic_long_horizon.csv") |
| 112 | +print(df.head()) |
0 commit comments