Skip to content

Commit b08efa2

Browse files
committed
fix notebook header levels
1 parent 5a56b80 commit b08efa2

File tree

2 files changed

+38
-18
lines changed

2 files changed

+38
-18
lines changed

docs/notebooks/1. Querying Attributions.ipynb

Lines changed: 28 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,9 @@
4545
"id": "f6d70e5b-6e56-45f7-b164-6a23ff565491",
4646
"metadata": {},
4747
"source": [
48-
"# Lung Example"
48+
"# Lung Example\n",
49+
"\n",
50+
"Compare type I pneumocyte marker genes in that cell type and compare to ionocytes"
4951
]
5052
},
5153
{
@@ -235,6 +237,24 @@
235237
"ax.set_xlabel(\"Cell Type\")"
236238
]
237239
},
240+
{
241+
"cell_type": "code",
242+
"execution_count": null,
243+
"id": "eb4b81e5-9202-4f1d-ac99-78cf56ac7a3a",
244+
"metadata": {},
245+
"outputs": [],
246+
"source": []
247+
},
248+
{
249+
"cell_type": "markdown",
250+
"id": "eb4479b2-6a54-46ab-b878-de76bd1256c8",
251+
"metadata": {},
252+
"source": [
253+
"# MS1 Example\n",
254+
"\n",
255+
"Replicate analysis in paper by calculating mean attributions for MS1 gene set and comparing across disease"
256+
]
257+
},
238258
{
239259
"cell_type": "markdown",
240260
"id": "22506b56-3e99-4302-9819-a8a03101d8ad",
@@ -356,7 +376,7 @@
356376
"id": "cbc6bf4d-e73c-432f-8f77-a0d47239ee48",
357377
"metadata": {},
358378
"source": [
359-
"### Calculate SIGnature Scores (Mean Attribution Scores) for each Cell Type\n",
379+
"### Calculate Mean Attribution Scores for each Cell Type\n",
360380
"\n",
361381
"Iterate through tiledb of each cell type, calculate score, concatenate the metadata"
362382
]
@@ -656,7 +676,7 @@
656676
"id": "38abb391-5efa-47a1-aa29-47fd56a2f896",
657677
"metadata": {},
658678
"source": [
659-
"## Analyze Scores\n",
679+
"### Analyze Scores\n",
660680
"\n",
661681
"Load metadata into \"Meta\" object to perform gene signature analysis"
662682
]
@@ -666,7 +686,7 @@
666686
"id": "ae7c8666-5596-4661-86dd-34b450f9bc73",
667687
"metadata": {},
668688
"source": [
669-
"### Load and Filter Metadata"
689+
"#### Load and Filter Metadata"
670690
]
671691
},
672692
{
@@ -735,7 +755,7 @@
735755
"id": "7ae97d49-64b9-4604-afcb-6e92c38e77c4",
736756
"metadata": {},
737757
"source": [
738-
"### Define \"Hits\" Based on Cutoff\n",
758+
"#### Define \"Hits\" Based on Cutoff\n",
739759
"Show multiple options for how to define hits and add to metadata (e.g. 90th percentile, 0.95 quantile, 2 stdev above mean)"
740760
]
741761
},
@@ -783,7 +803,7 @@
783803
"id": "4f227a83-d598-4052-acbe-e0b00566133c",
784804
"metadata": {},
785805
"source": [
786-
"### Calculate hit percentage per sample\n",
806+
"#### Calculate hit percentage per sample\n",
787807
"For all the monocytes/macrophages in each sample, calculate the percentage that are hits\n",
788808
"\n",
789809
"Only consider samples with at least 25 monocytes/macrophages and diseases that have at least 3 samples\n",
@@ -808,7 +828,7 @@
808828
"id": "ee7b6eb8-b186-4a72-9f07-2cbdf1ee4cb1",
809829
"metadata": {},
810830
"source": [
811-
"### Generate sample boxplot (like figure 4a)"
831+
"#### Generate sample boxplot (like figure 4a)"
812832
]
813833
},
814834
{
@@ -867,7 +887,7 @@
867887
"name": "python",
868888
"nbconvert_exporter": "python",
869889
"pygments_lexer": "ipython3",
870-
"version": "3.10.18"
890+
"version": "3.10.14"
871891
}
872892
},
873893
"nbformat": 4,

docs/notebooks/2. Generating Attributions.ipynb

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
"id": "340b550f-303d-4170-9324-99f74ee2a980",
66
"metadata": {},
77
"source": [
8-
"# Tutorial 2. Generating Attributions\n",
8+
"# Tutorial 2: Generating Attributions\n",
99
"\n",
1010
"This first part of this tutorial shows how to generate new attribution scores using integrated gradients and SCimilarity. \n",
1111
"\n",
@@ -44,15 +44,15 @@
4444
"id": "d75bd0ec-0c5c-49a2-9071-a48d41f0deac",
4545
"metadata": {},
4646
"source": [
47-
"## Part 1: Generate Attributions for New Data"
47+
"# Part 1: Generate Attributions for New Data"
4848
]
4949
},
5050
{
5151
"cell_type": "markdown",
5252
"id": "df81f956-d8a9-4ca3-9786-c44f8f89c896",
5353
"metadata": {},
5454
"source": [
55-
"#### Load SCimilarity Model and Attributions TileDB"
55+
"### Load SCimilarity Model and Attributions TileDB"
5656
]
5757
},
5858
{
@@ -75,7 +75,7 @@
7575
"id": "0b626c3a-eb71-42e4-864a-9127467abf30",
7676
"metadata": {},
7777
"source": [
78-
"#### Load dataset\n",
78+
"### Load dataset\n",
7979
"\n",
8080
"Load your custom dataset. This tutorial shows randomly generated cells. 5000 are entirely random and 500 selectively upregulate MS1.\n",
8181
"\n",
@@ -234,7 +234,7 @@
234234
"id": "89287600-b5ce-4163-ba76-dd97dc26c2c0",
235235
"metadata": {},
236236
"source": [
237-
"#### Align Dataset to SCimilarity Genes\n",
237+
"### Align Dataset to SCimilarity Genes\n",
238238
"\n",
239239
"Attributions collected against SCimilarity model need to be aligned to SCimilarity gene order and then log-normalized"
240240
]
@@ -264,7 +264,7 @@
264264
"id": "37f5d7a8-9aa0-4929-a53f-997c417d3818",
265265
"metadata": {},
266266
"source": [
267-
"#### Generate attributions\n",
267+
"### Generate attributions\n",
268268
"Buffer size controls how many cells processed at once. Can adjust to fit on GPU"
269269
]
270270
},
@@ -373,15 +373,15 @@
373373
"id": "f79704ee-95b7-4491-a498-f43ff6b7ba2e",
374374
"metadata": {},
375375
"source": [
376-
"## Part 2: Integrate new data with pre-computed attributions"
376+
"# Part 2: Integrate new data with pre-computed attributions"
377377
]
378378
},
379379
{
380380
"cell_type": "markdown",
381381
"id": "7d29af9b-0b69-4dab-9be6-4e459568837f",
382382
"metadata": {},
383383
"source": [
384-
"#### Create a tiledb for integrating with known matrices"
384+
"### Create a tiledb for integrating with known matrices"
385385
]
386386
},
387387
{
@@ -431,7 +431,7 @@
431431
"id": "cb6e801e-511f-4ce1-8511-542078002777",
432432
"metadata": {},
433433
"source": [
434-
"#### Search existing tiledbs and new tiledb"
434+
"### Search existing tiledbs and new tiledb"
435435
]
436436
},
437437
{
@@ -766,7 +766,7 @@
766766
"name": "python",
767767
"nbconvert_exporter": "python",
768768
"pygments_lexer": "ipython3",
769-
"version": "3.10.18"
769+
"version": "3.10.14"
770770
}
771771
},
772772
"nbformat": 4,

0 commit comments

Comments
 (0)