@@ -205,6 +205,10 @@ def test_to_numpy_pandas_numeric(dtype, expected_dtype):
205
205
@pytest .mark .parametrize (
206
206
("dtype" , "expected_dtype" ),
207
207
[
208
+ pytest .param (np .float16 , np .float16 , id = "float16" ),
209
+ pytest .param (np .float32 , np .float32 , id = "float32" ),
210
+ pytest .param (np .float64 , np .float64 , id = "float64" ),
211
+ pytest .param (np .longdouble , np .longdouble , id = "longdouble" ),
208
212
pytest .param (pd .Int8Dtype (), np .float64 , id = "Int8" ),
209
213
pytest .param (pd .Int16Dtype (), np .float64 , id = "Int16" ),
210
214
pytest .param (pd .Int32Dtype (), np .float64 , id = "Int32" ),
@@ -230,8 +234,8 @@ def test_to_numpy_pandas_numeric(dtype, expected_dtype):
230
234
)
231
235
def test_to_numpy_pandas_numeric_with_na (dtype , expected_dtype ):
232
236
"""
233
- Test the _to_numpy function with pandas.Series of pandas/PyArrow numeric dtypes and
234
- missing values (NA).
237
+ Test the _to_numpy function with pandas.Series of NumPy/ pandas/PyArrow numeric
238
+ dtypes and missing values (NA).
235
239
"""
236
240
data = [1.0 , 2.0 , None , 4.0 , 5.0 , 6.0 ]
237
241
if dtype == "float16[pyarrow]" and Version (pd .__version__ ) < Version ("2.2" ):
0 commit comments