@@ -229,6 +229,7 @@ def data_kind( # noqa: PLR0911
229
229
230
230
Examples
231
231
--------
232
+ <<<<<<< HEAD
232
233
>>> import numpy as np
233
234
>>> import xarray as xr
234
235
>>> import pandas as pd
@@ -247,20 +248,72 @@ def data_kind( # noqa: PLR0911
247
248
>>> data_kind(data=["data1.txt", "data2.txt"])
248
249
'file'
249
250
>>> data_kind(data=xr.DataArray(np.random.rand(4, 3)))
251
+ =======
252
+ >>> import io
253
+ >>> from pathlib import Path
254
+ >>> import numpy as np
255
+ >>> import pandas as pd
256
+ >>> import xarray as xr
257
+
258
+ The "arg" kind:
259
+
260
+ >>> [data_kind(data=data, required=False) for data in (2, 2.0, True, False)]
261
+ ['arg', 'arg', 'arg', 'arg']
262
+ >>> data_kind(data=None, required=False)
263
+ 'arg'
264
+
265
+ The "file" kind:
266
+
267
+ >>> [data_kind(data=data) for data in ("file.txt", ("file1.txt", "file2.txt"))]
268
+ ['file', 'file']
269
+ >>> data_kind(data=Path("file.txt"))
270
+ 'file'
271
+ >>> data_kind(data=(Path("file1.txt", "file2.txt")))
272
+ 'file'
273
+
274
+ The "grid" kind:
275
+
276
+ >>> data_kind(data=xr.DataArray(np.random.rand(4, 3))) # 2-D xarray.DataArray
250
277
'grid'
251
- >>> data_kind(data=xr.DataArray(np.random.rand(3, 4, 5)))
278
+ >>> data_kind(data=xr.DataArray(np.arange(12))) # 1-D xarray.DataArray
279
+ 'grid'
280
+ >>> data_kind(data=xr.DataArray(np.random.rand(2, 3, 4, 5))) # 4-D xarray.DataArray
281
+ 'grid'
282
+
283
+ The "image" kind:
284
+
285
+ >>> data_kind(data=xr.DataArray(np.random.rand(3, 4, 5))) # 3-D xarray.DataArray
252
286
'image'
253
- >>> data_kind(data=np.arange(10).reshape((5, 2)))
254
- 'matrix'
287
+
288
+ The "stringio"`` kind:
289
+
255
290
>>> data_kind(data=io.StringIO("TEXT1\nTEXT23\n"))
256
291
'stringio'
257
- >>> data_kind(data=pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}))
258
- 'vectors'
259
- >>> data_kind(data={"x": [1, 2], "y": [3, 4]})
260
- 'vectors'
261
- >>> data_kind(data=[[1, 2], [3, 4]])
262
- 'vectors'
263
- >>> data_kind(data=[1, 2, 3])
292
+
293
+ The "matrix"`` kind:
294
+
295
+ >>> data_kind(data=np.arange(10)) # 1-D numpy.ndarray
296
+ 'matrix'
297
+ >>> data_kind(data=np.arange(10).reshape((5, 2))) # 2-D numpy.ndarray
298
+ 'matrix'
299
+ >>> data_kind(data=np.arange(60).reshape((3, 4, 5))) # 3-D numpy.ndarray
300
+ 'matrix'
301
+ >>> data_kind(xr.DataArray(np.arange(12), name="x").to_dataset()) # xarray.Dataset
302
+ 'matrix'
303
+ >>> data_kind(data=[1, 2, 3]) # 1-D sequence
304
+ 'matrix'
305
+ >>> data_kind(data=[[1, 2, 3], [4, 5, 6]]) # sequence of sequences
306
+ 'matrix'
307
+ >>> data_kind(data={"x": [1, 2, 3], "y": [4, 5, 6]}) # dictionary
308
+ 'matrix'
309
+ >>> data_kind(data=pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})) # pd.DataFrame
310
+ 'matrix'
311
+ >>> data_kind(data=pd.Series([1, 2, 3], name="x")) # pd.Series
312
+ 'matrix'
313
+
314
+ The "vectors" kind:
315
+
316
+ >>> data_kind(data=None)
264
317
'vectors'
265
318
"""
266
319
# data is None and is required.
0 commit comments