|
| 1 | +""" |
| 2 | +Test the _to_ndarray function in the clib.conversion module. |
| 3 | +""" |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import numpy.testing as npt |
| 7 | +import pandas as pd |
| 8 | +import pytest |
| 9 | +from pygmt.clib.conversion import _to_ndarray |
| 10 | + |
| 11 | +try: |
| 12 | + import pyarrow as pa |
| 13 | + |
| 14 | + _HAS_PYARROW = True |
| 15 | +except ImportError: |
| 16 | + _HAS_PYARROW = False |
| 17 | + |
| 18 | + |
| 19 | +@pytest.fixture(scope="module", name="dtypes_numpy_numeric") |
| 20 | +def fixture_dtypes_numpy_numeric(): |
| 21 | + """ |
| 22 | + List of NumPy numeric dtypes. |
| 23 | +
|
| 24 | + Reference: https://numpy.org/doc/stable/reference/arrays.scalars.html |
| 25 | + """ |
| 26 | + return [ |
| 27 | + np.int8, |
| 28 | + np.int16, |
| 29 | + np.int32, |
| 30 | + np.int64, |
| 31 | + np.longlong, |
| 32 | + np.uint8, |
| 33 | + np.uint16, |
| 34 | + np.uint32, |
| 35 | + np.uint64, |
| 36 | + np.ulonglong, |
| 37 | + np.float16, |
| 38 | + np.float32, |
| 39 | + np.float64, |
| 40 | + np.longdouble, |
| 41 | + np.complex64, |
| 42 | + np.complex128, |
| 43 | + np.clongdouble, |
| 44 | + ] |
| 45 | + |
| 46 | + |
| 47 | +@pytest.fixture(scope="module", name="dtypes_pandas_numeric") |
| 48 | +def fixture_dtypes_pandas_numeric(): |
| 49 | + """ |
| 50 | + List of pandas numeric dtypes. |
| 51 | +
|
| 52 | + Reference: https://pandas.pydata.org/docs/reference/arrays.html |
| 53 | + """ |
| 54 | + return [ |
| 55 | + pd.Int8Dtype(), |
| 56 | + pd.Int16Dtype(), |
| 57 | + pd.Int32Dtype(), |
| 58 | + pd.Int64Dtype(), |
| 59 | + pd.UInt8Dtype(), |
| 60 | + pd.UInt16Dtype(), |
| 61 | + pd.UInt32Dtype(), |
| 62 | + pd.UInt64Dtype(), |
| 63 | + pd.Float32Dtype(), |
| 64 | + pd.Float64Dtype(), |
| 65 | + ] |
| 66 | + |
| 67 | + |
| 68 | +@pytest.fixture(scope="module", name="dtypes_pandas_numeric_pyarrow_backend") |
| 69 | +def fixture_dtypes_pandas_numeric_pyarrow_backend(): |
| 70 | + """ |
| 71 | + List of pandas dtypes that use pyarrow as the backend. |
| 72 | +
|
| 73 | + Reference: https://pandas.pydata.org/docs/user_guide/pyarrow.html |
| 74 | + """ |
| 75 | + return [ |
| 76 | + "int8[pyarrow]", |
| 77 | + "int16[pyarrow]", |
| 78 | + "int32[pyarrow]", |
| 79 | + "int64[pyarrow]", |
| 80 | + "uint8[pyarrow]", |
| 81 | + "uint16[pyarrow]", |
| 82 | + "uint32[pyarrow]", |
| 83 | + "uint64[pyarrow]", |
| 84 | + "float32[pyarrow]", |
| 85 | + "float64[pyarrow]", |
| 86 | + ] |
| 87 | + |
| 88 | + |
| 89 | +@pytest.fixture(scope="module", name="dtypes_pyarrow_numeric") |
| 90 | +def fixture_dtypes_pyarrow_numeric(): |
| 91 | + """ |
| 92 | + List of pyarrow numeric dtypes. |
| 93 | +
|
| 94 | + Reference: https://arrow.apache.org/docs/python/api/datatypes.html |
| 95 | + """ |
| 96 | + if not _HAS_PYARROW: |
| 97 | + return [] |
| 98 | + return [ |
| 99 | + pa.int8(), |
| 100 | + pa.int16(), |
| 101 | + pa.int32(), |
| 102 | + pa.int64(), |
| 103 | + pa.uint8(), |
| 104 | + pa.uint16(), |
| 105 | + pa.uint32(), |
| 106 | + pa.uint64(), |
| 107 | + # pa.float16(), # Need special handling. |
| 108 | + pa.float32(), |
| 109 | + pa.float64(), |
| 110 | + ] |
| 111 | + |
| 112 | + |
| 113 | +def _check_result(result): |
| 114 | + """ |
| 115 | + A helper function to check the result of the _to_ndarray function. |
| 116 | +
|
| 117 | + Check the following: |
| 118 | +
|
| 119 | + 1. The result is a NumPy array. |
| 120 | + 2. The result is C-contiguous. |
| 121 | + 3. The result dtype is not np.object_. |
| 122 | + """ |
| 123 | + assert isinstance(result, np.ndarray) |
| 124 | + assert result.flags.c_contiguous is True |
| 125 | + assert result.dtype != np.object_ |
| 126 | + |
| 127 | + |
| 128 | +def test_to_ndarray_numpy_ndarray_numpy_numeric(dtypes_numpy_numeric): |
| 129 | + """ |
| 130 | + Test the _to_ndarray function with 1-D NumPy arrays. |
| 131 | + """ |
| 132 | + # 1-D array |
| 133 | + for dtype in dtypes_numpy_numeric: |
| 134 | + array = np.array([1, 2, 3], dtype=dtype) |
| 135 | + assert array.dtype == dtype |
| 136 | + result = _to_ndarray(array) |
| 137 | + _check_result(result) |
| 138 | + npt.assert_array_equal(result, array) |
| 139 | + |
| 140 | + # 2-D array |
| 141 | + for dtype in dtypes_numpy_numeric: |
| 142 | + array = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype) |
| 143 | + assert array.dtype == dtype |
| 144 | + result = _to_ndarray(array) |
| 145 | + _check_result(result) |
| 146 | + npt.assert_array_equal(result, array) |
| 147 | + |
| 148 | + |
| 149 | +def test_to_ndarray_pandas_series_numeric( |
| 150 | + dtypes_numpy_numeric, dtypes_pandas_numeric, dtypes_pandas_numeric_pyarrow_backend |
| 151 | +): |
| 152 | + """ |
| 153 | + Test the _to_ndarray function with pandas Series with NumPy dtypes, pandas dtypes, |
| 154 | + and pandas dtypes with pyarrow backend. |
| 155 | + """ |
| 156 | + for dtype in ( |
| 157 | + dtypes_numpy_numeric |
| 158 | + + dtypes_pandas_numeric |
| 159 | + + dtypes_pandas_numeric_pyarrow_backend |
| 160 | + ): |
| 161 | + series = pd.Series([1, 2, 3], dtype=dtype) |
| 162 | + assert series.dtype == dtype |
| 163 | + result = _to_ndarray(series) |
| 164 | + _check_result(result) |
| 165 | + npt.assert_array_equal(result, series) |
| 166 | + |
| 167 | + |
| 168 | +@pytest.mark.skipif(not _HAS_PYARROW, reason="pyarrow is not installed") |
| 169 | +def test_to_ndarray_pandas_series_pyarrow_dtype(dtypes_pyarrow_numeric): |
| 170 | + """ |
| 171 | + Test the _to_ndarray function with pandas Series with pyarrow dtypes. |
| 172 | + """ |
| 173 | + for dtype in dtypes_pyarrow_numeric: |
| 174 | + array = pa.array([1, 2, 3], type=dtype) |
| 175 | + assert array.type == dtype |
| 176 | + result = _to_ndarray(array) |
| 177 | + _check_result(result) |
| 178 | + npt.assert_array_equal(result, array) |
| 179 | + |
| 180 | + # Special handling for float16. |
| 181 | + # Example from https://arrow.apache.org/docs/python/generated/pyarrow.float16.html |
| 182 | + array = pa.array(np.array([1.5, 2.5, 3.5], dtype=np.float16), type=pa.float16()) |
| 183 | + result = _to_ndarray(array) |
| 184 | + _check_result(result) |
| 185 | + npt.assert_array_equal(result, array) |
0 commit comments