@@ -391,17 +391,7 @@ def test_to_numpy_pandas_numeric_with_na(dtype, expected_dtype):
391
391
"U10" ,
392
392
"string[python]" ,
393
393
pytest .param ("string[pyarrow]" , marks = skip_if_no (package = "pyarrow" )),
394
- pytest .param (
395
- "string[pyarrow_numpy]" ,
396
- marks = [
397
- skip_if_no (package = "pyarrow" ),
398
- # TODO(pandas>=2.1): Remove the skipif marker for pandas<2.1.
399
- pytest .mark .skipif (
400
- Version (pd .__version__ ) < Version ("2.1" ),
401
- reason = "string[pyarrow_numpy] was added since pandas 2.1" ,
402
- ),
403
- ],
404
- ),
394
+ pytest .param ("string[pyarrow_numpy]" , marks = skip_if_no (package = "pyarrow" )),
405
395
],
406
396
)
407
397
def test_to_numpy_pandas_string (dtype ):
@@ -536,12 +526,7 @@ def test_to_numpy_pandas_datetime(dtype, expected_dtype):
536
526
537
527
# Convert to UTC if the dtype is timezone-aware
538
528
if "," in str (dtype ): # A hacky way to decide if the dtype is timezone-aware.
539
- # TODO(pandas>=2.1): Simplify the if-else statement.
540
- if Version (pd .__version__ ) < Version ("2.1" ) and dtype .startswith ("timestamp" ):
541
- # pandas 2.0 doesn't have the dt.tz_convert method for pyarrow.Timestamp.
542
- series = pd .to_datetime (series , utc = True )
543
- else :
544
- series = series .dt .tz_convert ("UTC" )
529
+ series = series .dt .tz_convert ("UTC" )
545
530
# Remove time zone information and preserve local time.
546
531
expected_series = series .dt .tz_localize (tz = None )
547
532
npt .assert_array_equal (result , np .array (expected_series , dtype = expected_dtype ))
0 commit comments