-
Notifications
You must be signed in to change notification settings - Fork 28
Description
A General Idea for implementing the functionality. It is pretty simple to go with fastapi for quicker development but flask/django can be a better optimisation option that we can consider. MVT is any day robust.
The approach with fastapi can be described as :
- REST API Core Functionality - The main endpoint that handles portfolio optimization:
@app.post("/api/v1/optimize")
async def optimize_portfolio(data: UploadFile = File(...), params: OptimizationRequest = None):
# Read uploaded financial data
df = pd.read_csv(data.file)
# Configure optimization with user parameters
constraints = Constraints(selection=df.columns)
if params.constraints["budget"]:
constraints.add_budget()
if params.constraints["long_only"]:
constraints.add_box(box_type='LongOnly', upper=params.constraints["upper_bound"])
# Run optimization using PorQua
optimization = LeastSquares(solver_name='highs', sparse=True)
optimization.constraints = constraints
result = optimization.solve()
return {
"weights": dict(zip(df.columns, result.x)),
"metrics": {
"objective_value": result.objective_value,
"tracking_error": np.sqrt(result.objective_value)
}
}
# CSV / JSON both can be given as request if needed -> a convertor might be used. CSV makes more senseCore components Integration:
LeastSquares
OptimizationData
Constraints
Portfolio
- Interactive UI Components - Key widgets for user interaction:
# File upload and parameter controls
file_upload = widgets.FileUpload(
description='Upload Data',
accept='.csv',
multiple=False
)
optimization_type = widgets.Dropdown(
options=['Least Squares', 'Minimum Variance'],
value='Least Squares',
description='Method:'
)
max_weight = widgets.FloatSlider(
value=0.1,
min=0.0,
max=1.0,
step=0.01,
description='Max Weight:'
)- Visualization of Results - Shows the optimized portfolio:
def plot_weights(weights):
fig = go.Figure(data=[
go.Bar(x=list(weights.keys()), y=list(weights.values()))
])
fig.update_layout(
title='Portfolio Weights',
xaxis_title='Assets',
yaxis_title='Weight'
)
fig.show()Ultimate Acheivements:
-
Making PorQua Accessible:
- Converts PorQua's Python library functionality into a web service
- Provides both API and UI interfaces for different user needs, can be converted to a b2b or b2c solution if need be.
-
User-Friendly Interface:
- Drag and drop file upload
- Interactive parameter adjustment
- Real time visualization of results
-
Flexible Implementation:
- RESTful API allows for programmatic access
- Jupyter interface for interactive use
- Docker support for easy deployment
Users can optimize portfolios by either:
- Making API calls programmatically
- Using the interactive Jupyter notebook interface
- Uploading data files and adjusting parameters through the web UI
Potential usage of these packages:
fastapi
uvicorn
pandas
numpy
python-multipart
pydantic
plotly
ipywidgets
requests
Deployment via a Dockerfile like:
FROM python:3.9-slim
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]For deployment, the solution can be containerized with all PorQua dependencies and run as a web service, while still maintaining the option to use the interactive Jupyter interface for more detailed analysis.
What IT Does:
- RESTful endpoints for data upload and processing
- Interactive Jupyter widgets for parameter configuration
- Real-time visualization of optimization results
- Error handling and validation layers
- Integration with PorQua's native optimization engines
I have tried to implement PorQua's core optimization capabilities while making them accessible to a broader audience through modern web interfaces. This is free and open for discussion. Still just an idea