@@ -31,9 +31,11 @@ Requirements:
3131-----------
3232OpenMPI >= 4.0.1.
3333
34- datacube_stats on the refactor branch: https://github.com/opendatacube/datacube-stats/tree/refactor
34+ datacube_stats https://github.com/opendatacube/datacube-stats/
3535
36- A database with postgis enabled.
36+ dea_tools to retrieve the waterbody polygons
37+
38+ A database with postgis enabled
3739
3840Other auxilliary data/scripts/shapefiles...
3941
@@ -57,7 +59,7 @@ How To:
5759
5860One'll need four steps.
5961
60- - Collect all the polygons interact with/contained by the landsat path/row and ouput the results as ` txt ` in ` $out ` .
62+ - Collect all the polygons intersect with/contained by the landsat path/row and ouput the results as ` txt ` in ` $out ` .
6163 Two reasons: 1. Aggregate by time if the polygon(s) would cover more than one path/row; 2. See ` Secondly ` in Section ` Why `
6264
6365` mpirun python -m mpi4py.futures wetland_brutal.py wit-pathrow --output-location $out $shapefile `
@@ -70,7 +72,15 @@ mpirun python -m mpi4py.futures wetland_brutal.py wit-pathrow --output-location
7072
7173with ` $out = /g/data1a/u46/users/ea6141/wlinsight/sadew/new ` ,
7274
73- and ` $shapefile=/g/data1a/u46/users/ea6141/wlinsight/shapefiles/waterfowlandwetlands_3577.shp `
75+ and ` $shapefile=/g/data1a/u46/users/ea6141/wlinsight/shapefiles/waterfowlandwetlands_3577.shp ` .
76+
77+ Or specially for the polygons from DEA waterbodies
78+
79+ ` mpirun python -m mpi4py.futures wetland_brutal.py wit-pathrow --geo-hash $hashlist --output-location $out `
80+
81+ where ` $hashlist ` is a file of geohash list of the waterbody polygons.
82+
83+ Note: in this case, ` $shapefile ` has to be left as ` default = None ` .
7484
7585The results in your output folder would look like:
7686```
@@ -130,7 +140,12 @@ Here `$in` is `$out` from the last step
130140
131141Example:
132142
133- ` mpirun python -m mpi4py.futures wetland_brutal.py wit-query --input-folder /g/data1a/u46/users/ea6141/wlinsight/sadew/new --output-location /g/data1a/u46/users/ea6141/wlinsight/sadew/query --union True --product-yaml /g/data1a/u46/users/ea6141/wlinsight/fc_pd.yaml /g/data1a/u46/users/ea6141/wlinsight/shapefiles/waterfowlandwetlands_3577.shp `
143+ ` mpirun python -m mpi4py.futures wetland_brutal.py wit-query --input-folder /g/data1a/u46/users/ea6141/wlinsight/sadew/new --output-location /g/data1a/u46/users/ea6141/wlinsight/sadew/query --union True --product-yaml /g/data1a/u46/users/ea6141/wlinsight/fc_pd.yaml /g/data1a/u46/users/ea6141/wlinsight/shapefiles/waterfowlandwetlands_3577.shp ` .
144+
145+ Or for the polygons from DEA waterbodies
146+
147+ ` mpirun python -m mpi4py.futures wetland_brutal.py wit-query --geo-hash $hashlist --input-folder $in --output-location $out --union True --product-yaml $pd_yaml `
148+
134149
135150The result would look like
136151```
@@ -162,6 +177,10 @@ Example
162177Or deal with the large polygons not contained by a single path/row, set ` --aggregate 15 ` typically, i.e.,
163178` mpirun python -m mpi4py.futures wetland_brutal.py wit-cal --feature-list /g/data1a/u46/users/ea6141/wlinsight/anae/intersect_16_17_18_739_740_741.txt --datasets /g/data1a/u46/users/ea6141/wlinsight/anane/query/16_17_18_739_740_741.pkl --aggregate 15 --product-yaml /g/data1a/u46/users/ea6141/wlinsight/fc_pd.yaml /g/data1a/u46/users/ea6141/wlinsight/shapefiles/waterfowlandwetlands_3577.shp `
164179
180+ For the polygons in DEA waterbodies, do
181+
182+ ` mpirun python -m mpi4py.futures wetland_brutal.py wit-cal --geo-hash $hashlist --feature-list $feature --datasets $datasets --aggregate $aggregate --product-yaml $pd_yaml `
183+
165184- Plot the data
166185
167186` python wetland_brutal.py wit-plot --output-location $folder --feature $id -n $property_1 -n $property_2 $shapefile `
@@ -177,6 +196,12 @@ Example:
177196` python wetland_brutal.py wit-plot --output-location sadew/results -n Site_Name shapefiles/waterfowlandwetlands_3577.shp `
178197, where ` Site_Name ` is an entry under ` properties ` for each polygon in the shapefile.
179198
199+ For the polygons in DEA waterbodies, do
200+
201+ ` python wetland_brutal.py wit-plot --geo-hash $hashlist --output-location $folder --feature $id -n hash ` ,
202+
203+ where ` -n hash ` is to specify the output file named by the geohash of the waterbody polygon.
204+
180205The results look like:
181206```
182207[ea6141@vdi-n24 wlinsight]$ ls sadew/results/
0 commit comments