|
| 1 | +""" |
| 2 | +Examples demonstrating the computation and visualization of Frenet frames. |
| 3 | +
|
| 4 | +This module contains implementations of examples for various trajectories |
| 5 | +including helicoidal and circular paths, with and without tool orientation. |
| 6 | +""" |
| 7 | + |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +from interpolatepy.frenet_frame import circular_trajectory_with_derivatives |
| 12 | +from interpolatepy.frenet_frame import compute_trajectory_frames |
| 13 | +from interpolatepy.frenet_frame import helicoidal_trajectory_with_derivatives |
| 14 | +from interpolatepy.frenet_frame import plot_frames |
| 15 | +from mpl_toolkits.mplot3d import Axes3D # noqa: F401 |
| 16 | + |
| 17 | + |
| 18 | +def example_8_5() -> None: |
| 19 | + """Recreate Example 8.5 using the general approach.""" |
| 20 | + print("Example 8.5: Helicoidal trajectory with Frenet frames") |
| 21 | + |
| 22 | + # Parameters from the example |
| 23 | + r = 2.0 |
| 24 | + d = 0.5 |
| 25 | + u_values = np.linspace(0, 4 * np.pi, 100) |
| 26 | + |
| 27 | + # Get helicoidal trajectory function |
| 28 | + def helix_func(u: float) -> tuple: |
| 29 | + return helicoidal_trajectory_with_derivatives(u, r, d) |
| 30 | + |
| 31 | + # Compute Frenet frames |
| 32 | + points, frames = compute_trajectory_frames(helix_func, u_values) |
| 33 | + |
| 34 | + # Visualize |
| 35 | + fig = plt.figure(figsize=(10, 8)) |
| 36 | + ax = fig.add_subplot(111, projection="3d") |
| 37 | + plot_frames(ax, points, frames, scale=0.5, skip=10) |
| 38 | + ax.set_title("Helicoidal Trajectory with Frenet Frames") |
| 39 | + ax.set_xlabel("x") |
| 40 | + ax.set_ylabel("y") |
| 41 | + ax.set_zlabel("z") |
| 42 | + ax.set_box_aspect([1, 1, 1]) |
| 43 | + |
| 44 | + plt.tight_layout() |
| 45 | + plt.show() |
| 46 | + |
| 47 | + |
| 48 | +def example_8_6() -> None: |
| 49 | + """Recreate Example 8.6.""" |
| 50 | + print("Example 8.6: Circular trajectory with tool orientation") |
| 51 | + |
| 52 | + # Parameters from the example |
| 53 | + r = 2.0 |
| 54 | + alpha = np.radians(30) # 30 degrees rotation about binormal axis |
| 55 | + u_values = np.linspace(0, 2 * np.pi, 100) |
| 56 | + |
| 57 | + # Get circular trajectory function |
| 58 | + def circle_func(u: float) -> tuple: |
| 59 | + return circular_trajectory_with_derivatives(u, r) |
| 60 | + |
| 61 | + # Compute Frenet frames |
| 62 | + points, frenet_frames = compute_trajectory_frames(circle_func, u_values) |
| 63 | + |
| 64 | + # Compute tool frames with orientation alpha |
| 65 | + _, tool_frames = compute_trajectory_frames(circle_func, u_values, tool_orientation=alpha) |
| 66 | + |
| 67 | + # Visualize |
| 68 | + fig = plt.figure(figsize=(12, 6)) |
| 69 | + |
| 70 | + # Plot Frenet frames |
| 71 | + ax1 = fig.add_subplot(121, projection="3d") |
| 72 | + plot_frames(ax1, points, frenet_frames, scale=0.5, skip=8) |
| 73 | + ax1.set_title("Circular Trajectory with Frenet Frames") |
| 74 | + ax1.set_xlabel("x") |
| 75 | + ax1.set_ylabel("y") |
| 76 | + ax1.set_zlabel("z") |
| 77 | + |
| 78 | + # Plot tool frames |
| 79 | + ax2 = fig.add_subplot(122, projection="3d") |
| 80 | + plot_frames(ax2, points, tool_frames, scale=0.5, skip=8) |
| 81 | + ax2.set_title("Circular Trajectory with Tool Frames (α = 30°)") # noqa: RUF001 |
| 82 | + ax2.set_xlabel("x") |
| 83 | + ax2.set_ylabel("y") |
| 84 | + ax2.set_zlabel("z") |
| 85 | + |
| 86 | + # Set equal aspect ratio with more space for z |
| 87 | + for ax in [ax1, ax2]: |
| 88 | + ax.set_box_aspect([1, 1, 0.5]) |
| 89 | + ax.set_zlim(-1, 1) |
| 90 | + |
| 91 | + plt.tight_layout() |
| 92 | + plt.show() |
| 93 | + |
| 94 | + |
| 95 | +def example_rot() -> None: |
| 96 | + """Recreate Example Rotations.""" |
| 97 | + print("Example with RPY rotations: Circular trajectory with tool orientation") |
| 98 | + |
| 99 | + # Parameters from the example |
| 100 | + r = 2.0 |
| 101 | + alpha = np.radians(30) # Roll angle |
| 102 | + beta = np.radians(60) # Pitch angle |
| 103 | + gamma = np.radians(0) # Yaw angle |
| 104 | + u_values = np.linspace(0, 2 * np.pi, 100) |
| 105 | + |
| 106 | + # Get circular trajectory function |
| 107 | + def circle_func(u: float) -> tuple: |
| 108 | + return circular_trajectory_with_derivatives(u, r) |
| 109 | + |
| 110 | + # Compute Frenet frames |
| 111 | + points, frenet_frames = compute_trajectory_frames(circle_func, u_values) |
| 112 | + |
| 113 | + # Compute tool frames with RPY orientation |
| 114 | + _, tool_frames = compute_trajectory_frames( |
| 115 | + circle_func, u_values, tool_orientation=(alpha, beta, gamma) |
| 116 | + ) |
| 117 | + |
| 118 | + # Visualize |
| 119 | + fig = plt.figure(figsize=(12, 6)) |
| 120 | + |
| 121 | + # Plot Frenet frames |
| 122 | + ax1 = fig.add_subplot(121, projection="3d") |
| 123 | + plot_frames(ax1, points, frenet_frames, scale=0.5, skip=8) |
| 124 | + ax1.set_title("Circular Trajectory with Frenet Frames") |
| 125 | + ax1.set_xlabel("x") |
| 126 | + ax1.set_ylabel("y") |
| 127 | + ax1.set_zlabel("z") |
| 128 | + |
| 129 | + # Plot tool frames |
| 130 | + ax2 = fig.add_subplot(122, projection="3d") |
| 131 | + plot_frames(ax2, points, tool_frames, scale=0.5, skip=8) |
| 132 | + ax2.set_title("Circular Trajectory with Tool Frames Rotated") |
| 133 | + ax2.set_xlabel("x") |
| 134 | + ax2.set_ylabel("y") |
| 135 | + ax2.set_zlabel("z") |
| 136 | + |
| 137 | + # Set equal aspect ratio with more space for z |
| 138 | + for ax in [ax1, ax2]: |
| 139 | + ax.set_box_aspect([1, 1, 0.5]) |
| 140 | + ax.set_zlim(-1, 1) |
| 141 | + |
| 142 | + plt.tight_layout() |
| 143 | + plt.show() |
| 144 | + |
| 145 | + |
| 146 | +if __name__ == "__main__": |
| 147 | + print() |
| 148 | + print("Frenet Frame and Tool Orientation Implementation") |
| 149 | + print("=" * 60) |
| 150 | + print() |
| 151 | + |
| 152 | + example_8_5() |
| 153 | + print("=" * 60) |
| 154 | + print() |
| 155 | + |
| 156 | + example_8_6() |
| 157 | + print("=" * 60) |
| 158 | + print() |
| 159 | + |
| 160 | + example_rot() |
| 161 | + print("=" * 60) |
| 162 | + print() |
0 commit comments