@@ -123,183 +123,3 @@ def rank_sample(
123123 # [END genappbuilder_rank]
124124
125125 return response
126-
127-
128- def grounded_generation_inline_vais_sample (
129- project_number : str ,
130- engine_id : str ,
131- ) -> discoveryengine .GenerateGroundedContentResponse :
132- # [START genappbuilder_grounded_generation_inline_vais]
133- from google .cloud import discoveryengine_v1 as discoveryengine
134-
135- # TODO(developer): Uncomment these variables before running the sample.
136- # project_number = "YOUR_PROJECT_NUMBER"
137- # engine_id = "YOUR_ENGINE_ID"
138-
139- client = discoveryengine .GroundedGenerationServiceClient ()
140-
141- request = discoveryengine .GenerateGroundedContentRequest (
142- # The full resource name of the location.
143- # Format: projects/{project_number}/locations/{location}
144- location = client .common_location_path (project = project_number , location = "global" ),
145- generation_spec = discoveryengine .GenerateGroundedContentRequest .GenerationSpec (
146- model_id = "gemini-1.5-flash" ,
147- ),
148- # Conversation between user and model
149- contents = [
150- discoveryengine .GroundedGenerationContent (
151- role = "user" ,
152- parts = [
153- discoveryengine .GroundedGenerationContent .Part (
154- text = "How did Google do in 2020? Where can I find BigQuery docs?"
155- )
156- ],
157- )
158- ],
159- system_instruction = discoveryengine .GroundedGenerationContent (
160- parts = [
161- discoveryengine .GroundedGenerationContent .Part (
162- text = "Add a smiley emoji after the answer."
163- )
164- ],
165- ),
166- # What to ground on.
167- grounding_spec = discoveryengine .GenerateGroundedContentRequest .GroundingSpec (
168- grounding_sources = [
169- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
170- inline_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .InlineSource (
171- grounding_facts = [
172- discoveryengine .GroundingFact (
173- fact_text = (
174- "The BigQuery documentation can be found at https://cloud.google.com/bigquery/docs/introduction"
175- ),
176- attributes = {
177- "title" : "BigQuery Overview" ,
178- "uri" : "https://cloud.google.com/bigquery/docs/introduction" ,
179- },
180- ),
181- ]
182- ),
183- ),
184- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
185- search_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .SearchSource (
186- # The full resource name of the serving config for a Vertex AI Search App
187- serving_config = f"projects/{ project_number } /locations/global/collections/default_collection/engines/{ engine_id } /servingConfigs/default_search" ,
188- ),
189- ),
190- ]
191- ),
192- )
193- response = client .generate_grounded_content (request )
194-
195- # Handle the response
196- print (response )
197- # [END genappbuilder_grounded_generation_inline_vais]
198-
199- return response
200-
201-
202- def grounded_generation_google_search_sample (
203- project_number : str ,
204- ) -> discoveryengine .GenerateGroundedContentResponse :
205- # [START genappbuilder_grounded_generation_google_search]
206- from google .cloud import discoveryengine_v1 as discoveryengine
207-
208- # TODO(developer): Uncomment these variables before running the sample.
209- # project_number = "YOUR_PROJECT_NUMBER"
210-
211- client = discoveryengine .GroundedGenerationServiceClient ()
212-
213- request = discoveryengine .GenerateGroundedContentRequest (
214- # The full resource name of the location.
215- # Format: projects/{project_number}/locations/{location}
216- location = client .common_location_path (project = project_number , location = "global" ),
217- generation_spec = discoveryengine .GenerateGroundedContentRequest .GenerationSpec (
218- model_id = "gemini-1.5-flash" ,
219- ),
220- # Conversation between user and model
221- contents = [
222- discoveryengine .GroundedGenerationContent (
223- role = "user" ,
224- parts = [
225- discoveryengine .GroundedGenerationContent .Part (
226- text = "How much is Google stock?"
227- )
228- ],
229- )
230- ],
231- system_instruction = discoveryengine .GroundedGenerationContent (
232- parts = [
233- discoveryengine .GroundedGenerationContent .Part (text = "Be comprehensive." )
234- ],
235- ),
236- # What to ground on.
237- grounding_spec = discoveryengine .GenerateGroundedContentRequest .GroundingSpec (
238- grounding_sources = [
239- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
240- google_search_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .GoogleSearchSource (
241- # Optional: For Dynamic Retrieval
242- dynamic_retrieval_config = discoveryengine .GenerateGroundedContentRequest .DynamicRetrievalConfiguration (
243- predictor = discoveryengine .GenerateGroundedContentRequest .DynamicRetrievalConfiguration .DynamicRetrievalPredictor (
244- threshold = 0.7
245- )
246- )
247- )
248- ),
249- ]
250- ),
251- )
252- response = client .generate_grounded_content (request )
253-
254- # Handle the response
255- print (response )
256- # [END genappbuilder_grounded_generation_google_search]
257-
258- return response
259-
260-
261- def grounded_generation_streaming_sample (
262- project_number : str ,
263- ) -> discoveryengine .GenerateGroundedContentResponse :
264- # [START genappbuilder_grounded_generation_streaming]
265- from google .cloud import discoveryengine_v1 as discoveryengine
266-
267- # TODO(developer): Uncomment these variables before running the sample.
268- # project_id = "YOUR_PROJECT_ID"
269-
270- client = discoveryengine .GroundedGenerationServiceClient ()
271-
272- request = discoveryengine .GenerateGroundedContentRequest (
273- # The full resource name of the location.
274- # Format: projects/{project_number}/locations/{location}
275- location = client .common_location_path (project = project_number , location = "global" ),
276- generation_spec = discoveryengine .GenerateGroundedContentRequest .GenerationSpec (
277- model_id = "gemini-1.5-flash" ,
278- ),
279- # Conversation between user and model
280- contents = [
281- discoveryengine .GroundedGenerationContent (
282- role = "user" ,
283- parts = [
284- discoveryengine .GroundedGenerationContent .Part (
285- text = "Summarize how to delete a data store in Vertex AI Agent Builder?"
286- )
287- ],
288- )
289- ],
290- grounding_spec = discoveryengine .GenerateGroundedContentRequest .GroundingSpec (
291- grounding_sources = [
292- discoveryengine .GenerateGroundedContentRequest .GroundingSource (
293- google_search_source = discoveryengine .GenerateGroundedContentRequest .GroundingSource .GoogleSearchSource ()
294- ),
295- ]
296- ),
297- )
298- responses = client .stream_generate_grounded_content (iter ([request ]))
299-
300- for response in responses :
301- # Handle the response
302- print (response )
303- # [END genappbuilder_grounded_generation_streaming]
304-
305- return response
0 commit comments